
E2.1 – Digital Electronics II

Solutions to Problem Sheet 3 – Finite State Machines
(Question ratings: A=Easy, …, E=Hard. All students should do questions rated A, B or C as a minimum)

Rev: Nov 2016 E2.1 Digital Electronics II – Solutions to Problem Sheet 3 Page 1

1B. In comparing state diagrams, you should first check the transitions and then check that
the outputs are the same in each state. It can be seen that the transitions are the same for
all the versions. However the outputs are incorrect in version (c) and version (e).

When output are marked on arrows they refer to the state from which the arrows
originate. In version (c) therefore, state 1 has an output Z=A instead of Z=0 as it should
be.

In version (e), the output is not specified for the case A=1 in state 0. It must either be
specified by default as in version (d) or else explicitly as in version (b).

2C. You should first determine the state sequence. The transitions depend on the value of A
and B immediately before the Clock↑ edge. A common mistake is to use the values after
the edge.

Note that X is only ever high in state 0 and then only if A and B are high. A common
mistake is to make X high in state 2 rather than state 0: remember that outputs on
transition arrows refer to the preceding state.

3B. This represents a 2-bit bidirectional counter whose counting sequence has only one bit
changing at a time. This unit-distance property means that you can decode the outputs
without risk of glitches.

DIR S1 S0 NS1 NS0

0 0 0 0 1
0 0 1 1 1
0 1 0 0 0
0 1 1 1 0
1 0 0 1 0
1 0 1 0 0
1 1 0 1 1
1 1 1 0 1

4C. Since the output must go high during the fourth clock cycle in response to the value in
that cycle, we must have a Mealy machine: a Moore machine would insert too much
delay. If IN=1 during the current cycle then we want OUT=1 if the previous three (or
more) cycles had IN=1. We therefore need to remember how many of the previous cycles
had IN=1: 0, 1, 2 or ≥3. We therefore need four states. Note that an unavoidable glitch
possibility exists if IN goes high for three clock cycles; this can only be eliminated
reliably by delaying the output for an extra cycle.

Rev: Nov 2016 E2.1 Digital Electronics II – Solutions to Problem Sheet 3 Page 2

5D. The previous question could be regarded as recognising the sequence 1111. This question
is pretty similar but with a different pattern to recognise. There are two significant
differences. Firstly, when an input bit does not conform to the required sequence, we
cannot always just branch back to state 0; the last few bits of the rejected input sequence
may be the first few bits of the correct one. Secondly, the output must go high during the
cycle following the trigger sequence; this requires an extra state at the end and allows us
to use a Moore machine.

6C. The following table therefore lists both the value of the next state (NS1:0):

S1 S0 NS1 NS0

0 0 X X
0 1 1 0
1 1 0 1
1 0 1 1

Choosing the “don’t care” entries to simplify the expressions we get:

D flipflop inputs: S0S1NS1 += NS0 = S1

If our flipflops possess set inputs, we don’t require the gate. We can avoid state 0 either
by forcing S0 high whenever S1 is low or by forcing S1 high whenever S0 is low. The
former approach does not work because the set input to S0 will not be released in time
when the state machine goes from state 1 to state 2. We can redraw our table with the

Rev: Nov 2016 E2.1 Digital Electronics II – Solutions to Problem Sheet 3 Page 3

assumption that S1 is forced high whenever S0 is low; this means that the S1 flipflop’s
data input can be “don’t care” whenever NS0 is equal to 0:

S1 S0 NS1 NS0

0 0 X X
0 1 X 0
1 1 0 1
1 0 1 1

Choosing the “don’t care” entries to simplify the expressions we get:

D flipflop inputs: NS1 S0= NS0 = S1

7C. The basic diagram is shown below; note that we must use a Mealy machine in order to
get zero delay between IN and OUT. The only two points of difficulty is what to do if the
input goes high in the middle of the double pulse sequence and whether we wish to
ensure that consecutive pulses are separated by at least one clock cycle.

The following diagram ensures that pulses are distinct (by the addition of states e and f)
and abandons pulse sequences when another input transition occurs:

a e b c d f1/1

1

0/1 0/10
1

1/1

0

I/O Signals: IN/OUT Default: OUT=0

8C.

Rev: Nov 2016 E2.1 Digital Electronics II – Solutions to Problem Sheet 3 Page 4

9. The Verilog implementation of the FSM in Q8 is left to students. It should be fairly
straight forward.

10. Here is one implementation (by me) that works very well:

