
September 2010 Altera Corporation

UG-MFNALT_FIFO-6.2

Copyright © 2010 Altera Corp
logo, and specific device desig
countries. All other words and
their respective owners. Altera
maskwork rights, and copyrig
accordance with Altera's stand
without notice. Altera assume
service described herein excep
version of device specification

101 Innovation Drive
San Jose, CA 95134
www.altera.com
SCFIFO and DCFIFO Megafunctions
User Guide
Altera provides FIFO functions through the parameterizable single-clock FIFO
(SCFIFO) and dual-clock FIFO (DCFIFO) megafunctions. The FIFO functions are
mostly applied in data buffering applications that comply with the first-in-first-out
data flow in synchronous or asynchronous clock domains. The specific names of the
megafunctions are as follows:

■ SCFIFO: single-clock FIFO

■ DCFIFO: dual-clock FIFO (supports same port widths for input and output data)

■ DCFIFO_MIXED_WIDTHS: dual-clock FIFO (supports different port widths for
input and output data)

1 In this user guide, the term “DCFIFO” refers to both the DCFIFO and
DCFIFO_MIXED_WIDTHS megafunctions, unless specified.

This user guide contains the following sections:

■ “Configuration Methods” on page 2

■ “Specifications” on page 2

■ “Parameter Specifications” on page 10

■ “Functional Timing Requirements” on page 13

■ “Output Status Flags and Latency” on page 14

■ “Metastability Protection and Related Options” on page 16

■ “Synchronous Clear and Asynchronous Clear Effect” on page 18

■ “Different Input and Output Width” on page 19

■ “Constraint Settings” on page 21

■ “Coding Example for Manual Instantiation” on page 22

■ “Design Example” on page 23

1 Before you configure and build the FIFO megafunction, refer to “Specifications” on
page 2 and “Parameter Specifications” on page 10. The description about input ports,
output ports, and parameters is important especially if you decide to manually
instantiate the megafunctions.
Subscribe

oration. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera
nations are trademarks and/or service marks of Altera Corporation in the U.S. and other
 logos identified as trademarks and/or service marks are the property of Altera Corporation or
 products are protected under numerous U.S. and foreign patents and pending applications,
hts. Altera warrants performance of its semiconductor products to current specifications in
ard warranty, but reserves the right to make changes to any products and services at any time

s no responsibility or liability arising out of the application or use of any information, product, or
t as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest
s before relying on any published information and before placing orders for products or services.

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=UG-MFNALT_FIFO

Page 2 Configuration Methods
Configuration Methods
There are two methods to configure and build the FIFO megafunctions:

■ Using the FIFO MegaWizard interface launched from the MegaWizard™ Plug-In
Manager in the Quartus® II software.

Altera recommends using this method to build your FIFO megafunctions. It is an
efficient way to configure and build the FIFO megafunctions. The FIFO
MegaWizard interface provides options that you can easily use to configure the
FIFO megafunctions.

f For general information about the Quartus II MegaWizard Plug-In
Manager, refer to the Megafunction Overview User Guide.

■ Manually instantiating the FIFO megafunctions.

Use this method only if you are an expert user. This method requires that you
know the detailed specifications of the megafunctions. You must ensure that the
input and output ports used, and the parameter values assigned are valid for the
FIFO megafunction you instantiate for your target device.

For coding examples about how to manually instantiate the FIFO megafunctions,
you can refer to “Coding Example for Manual Instantiation” on page 22.

Specifications
This section describes the prototypes, component declarations, ports, and parameters
of the SCFIFO and DCFIFO megafinctions. These ports and parameters are available
to customize the SCFIFO and DCFIFO megafunctions according to your application.

Verilog HDL Prototype
You can locate the following Verilog HDL prototypes in the Verilog Design File (.v)
altera_mf.v in the <Quartus II installation directory>\eda\synthesis directory.

SCFIFO
module scfifo
#(parameter add_ram_output_register = "OFF",

parameter allow_rwcycle_when_full = "OFF",
parameter almost_empty_value = 0,
parameter almost_full_value = 0,
parameter intended_device_family = "unused",
parameter lpm_numwords = 1,
parameter lpm_showahead = "OFF",
parameter lpm_width = 1,
parameter lpm_widthu = 1,
parameter overflow_checking = "ON",
parameter underflow_checking = "ON",
parameter use_eab = "ON",
parameter lpm_type = "scfifo",
parameter lpm_hint = "unused")

(input wire aclr,
output wire almost_empty,
output wire almost_full,
SCFIFO and DCFIFO Megafunctions September 2010 Altera Corporation

http://www.altera.com/literature/ug/ug_megafunction_overview.pdf

Specifications Page 3
input wire clock,
input wire [lpm_width-1:0] data,
output wire empty,
output wire full,
output wire [lpm_width-1:0] q,
input wire rdreq,
input wire sclr,
output wire [lpm_widthu-1:0] usedw,
input wire wrreq)/* synthesis syn_black_box=1 */;

endmodule

DCFIFO
module dcfifo_mixed_widths
#(parameter add_ram_output_register = "OFF",

parameter add_usedw_msb_bit = "OFF",
parameter clocks_are_synchronized = "FALSE",
parameter delay_rdusedw = 1,
parameter delay_wrusedw = 1,
parameter intended_device_family = "unused",
parameter lpm_numwords = 1,
parameter lpm_showahead = "OFF",
parameter lpm_width = 1,
parameter lpm_width_r = 0,
parameter lpm_widthu = 1,
parameter lpm_widthu_r = 1,
parameter overflow_checking = "ON",
parameter rdsync_delaypipe = 0,
parameter underflow_checking = "ON",
parameter use_eab = "ON",
parameter write_aclr_synch = "OFF",
parameter wrsync_delaypipe = 0,
parameter lpm_type = "dcfifo_mixed_widths",
parameter lpm_hint = "unused")

(input wire aclr,
input wire [lpm_width-1:0] data,
output wire [lpm_width_r-1:0] q,
input wire rdclk,
output wire rdempty,
output wire rdfull,
input wire rdreq,
output wire [lpm_widthu_r-1:0] rdusedw,
input wire wrclk,
output wire wrempty,
output wire wrfull,
input wire wrreq,
output wire [lpm_widthu-1:0] wrusedw)/* synthesis syn_black_box=1 */;

endmodule //dcfifo_mixed_widths
September 2010 Altera Corporation SCFIFO and DCFIFO Megafunctions

Page 4 Specifications
VHDL Component Declaration
You can locate the following VHDL component declarations in the VHDL Design File
(.vhd) altera_mf.vhd in the <Quartus II installation
directory>\libraries\vhdl\altera_mf directory.

SCFIFO
component scfifo

generic (
add_ram_output_register: string := "OFF";
allow_rwcycle_when_full: string := "OFF";
almost_empty_value: natural := 0;
almost_full_value: natural := 0;
intended_device_family: string := "unused";
lpm_numwords: natural;
lpm_showahead: string := "OFF";
lpm_width: natural;
lpm_widthu: natural := 1;
overflow_checking: string := "ON";
underflow_checking: string := "ON";
use_eab: string := "ON";
lpm_hint: string := "UNUSED";
lpm_type: string := "scfifo"

);
port(

aclr: in std_logic := '0';
almost_empty: out std_logic;
almost_full: out std_logic;
clock: in std_logic;
data: in std_logic_vector(lpm_width-1 downto 0);
empty: out std_logic;
full: out std_logic;
q : out std_logic_vector(lpm_width-1 downto 0);
rdreq: in std_logic;
sclr: in std_logic := '0';
usedw: out std_logic_vector(lpm_widthu-1 downto 0);
wrreq: in std_logic

);
end component;

DCFIFO
component dcfifo_mixed_widths

generic (
add_ram_output_register: string := "OFF";
add_usedw_msb_bit: string := "OFF";
clocks_are_synchronized: string := "FALSE";
delay_rdusedw: natural := 1;
delay_wrusedw: natural := 1;
intended_device_family: string := "unused";
lpm_numwords: natural;
lpm_showahead: string := "OFF";
lpm_width: natural;
lpm_width_r: natural := 0;
lpm_widthu: natural := 1;
lpm_widthu_r: natural := 1;
SCFIFO and DCFIFO Megafunctions September 2010 Altera Corporation

Specifications Page 5
overflow_checking: string := "ON";
rdsync_delaypipe: natural := 0;
underflow_checking:string := "ON";
use_eab: string := "ON";
write_aclr_synch: string := "OFF";
wrsync_delaypipe: natural := 0;
lpm_hint: string := "UNUSED";
lpm_type: string := "dcfifo_mixed_widths"

);
port(

aclr: in std_logic := '0';
data: in std_logic_vector(lpm_width-1 downto 0);
q : out std_logic_vector(lpm_width_r-1 downto 0);
rdclk: in std_logic;
rdempty: out std_logic;
rdfull: out std_logic;
rdreq: in std_logic;
rdusedw: out std_logic_vector(lpm_widthu_r-1 downto 0);
wrclk: in std_logic;
wrempty: out std_logic;
wrfull: out std_logic;
wrreq: in std_logic;
wrusedw: out std_logic_vector(lpm_widthu-1 downto 0)

);
end component;

VHDL LIBRARY-USE Declaration
The VHDL LIBRARY-USE declaration is not required if you use the VHDL
component declaration.

LIBRARY altera_mf;
USE altera_mf.altera_mf_components.all;
September 2010 Altera Corporation SCFIFO and DCFIFO Megafunctions

Page 6 Specifications
Ports Specifications
This section provides diagrams of the SCFIFO and DCFIFO blocks to help in
visualizing their input and output ports. This section also describes each port in detail
to help in understanding their usages, functionality, or any restrictions. For better
illustrations, some descriptions might refer you to a specific section in this user guide.

Figure 1 shows the input and output ports of the SCFIFO and DCFIFO
megafunctions.

For the SCFIFO block, the read and write signals are synchronized to the same clock;
for the DCFIFO block, the read and write signals are synchronized to the rdclk and
wrclk clocks respectively. The prefixes wr and rd represent the signals that are
synchronized by the wrclk and rdclk clocks respectively.

Figure 1. Input and Output Ports

SCFIFO

data[7..0]

wrreq

rdreq

sclr

aclr

clock

almost_full

almost_empty

usedw[7..0]

empty

full

q[7..0]

DCFIFO

data[7..0]

wrreq

rdreq

wrempty

aclr

rdempty
rdusedw[8..0]

wrclk wrusedw[8..0]

q[7..0]

rdfull

wrfull

rdclk
SCFIFO and DCFIFO Megafunctions September 2010 Altera Corporation

Specifications Page 7
Table 1 describes the ports of the megafunctions.

1 The term “series” refers to all the device families of a particular device. For example,
“Stratix series” refers to the Stratix®, Stratix GX, Stratix II, Stratix II GX, Stratix III, and
new devices, unless specified otherwise.

Table 1. Input and Output Ports Description (Part 1 of 3)

Port Type Required Description

clock (1) Input Yes Positive-edge-triggered clock.

wrclk (2) Input Yes

Positive-edge-triggered clock.

Use to synchronize the following ports:

■ data

■ wrreq

■ wrfull

■ wrempty

■ wrusedw

rdclk (2) Input Yes

Positive-edge-triggered clock.

Use to synchronize the following ports:

■ q

■ rdreq

■ rdfull

■ rdempty

■ rdusedw

data (3) Input Yes
Holds the data to be written in the FIFO megafunction when the wrreq
signal is asserted. If you manually instantiate the FIFO megafunction,
ensure the port width is equal to the lpm_width parameter.
September 2010 Altera Corporation SCFIFO and DCFIFO Megafunctions

Page 8 Specifications
wrreq (3) Input Yes

Assert this signal to request for a write operation.

Ensure that the following conditions are met:

■ Do not assert the wrreq signal when the full (for SCFIFO) or wrfull
(for DCFIFO) port is high. Enable the overflow protection circuitry or
set the overflow_checking parameter to ON so that the FIFO
megafunction can automatically disable the wrreq signal when it is
full.

■ The wrreq signal must meet the functional timing requirement based
on the full or wrfull signal. Refer to “Functional Timing
Requirements” on page 13.

■ Do not assert the wrreq signal during the deassertion of the aclr
signal. Violating this requirement creates a race condition between the
falling edge of the aclr signal and the rising edge of the write clock if
the wrreq port is set to high. For both the DCFIFO megafunctions that
target Stratix and Cyclone series (except Stratix, Stratix GX, and
Cyclone devices), you have the option to automatically add a circuit to
synchronize the aclr signal with the wrclk clock, or set the
write_aclr_synch parameter to ON. Use this option to ensure that
the restriction is obeyed.

rdreq (3) Input Yes

Assert this signal to request for a read operation. The rdreq signal acts
differently in normal mode and show-ahead mode. For more information
about the two different FIFO modes, refer to the description of the
lpm_showahead parameter in Table 2 on page 10.

Ensure that the following conditions are met:

■ Do not assert the rdreq signal when the empty (for SCFIFO) or
rdempty (for DCFIFO) port is high. Enable the underflow protection
circuitry or set the underflow_checking parameter to ON so that the
FIFO megafunction can automatically disable the rdreq signal when it
is empty.

■ The rdreq signal must meet the functional timing requirement based
on the empty or rdempty signal. Refer to “Functional Timing
Requirements” on page 13.

sclr (1)

aclr (3)
Input No

Assert this signal to clear all the output status ports, but the effect on the
q output may vary for different FIFO configurations. For more information
about the effects on asserting the reset signals for the SCFIFO and
DCFIFO, refer to Table 7 on page 18 or Table 8 on page 19 respectively.

q (3) Output Yes

Shows the data read from the read request operation.

For the SCFIFO megafunction and DCFIFO megafunction, the width of the
q port must be equal to the width of the data port. If you manually
instantiate the megafunctions, ensure that the port width is equal to the
lpm_width parameter.

For the DCFIFO_MIXED_WIDTHS megafunction, the width of the q port
can be different from the width of the data port. If you manually
instantiate the megafunction, ensure that the width of the q port is equal
to the lpm_width_r parameter. The megafunction supports a wide write
port with a narrow read port, and vice versa. However, the width ratio is
restricted by the type of RAM block used, and in general, are in the power
of 2. Refer to “Different Input and Output Width” on page 19.

Table 1. Input and Output Ports Description (Part 2 of 3)

Port Type Required Description
SCFIFO and DCFIFO Megafunctions September 2010 Altera Corporation

Specifications Page 9
The output latency information of the FIFO megafunctions is important, especially for
the q output port, because there is no output flag to indicate when the output is valid
to be sampled. For more information about the output latency (including other status
flags), refer to Table 3 on page 14 or Table 4 on page 16.

full (1)

wrfull (2)

rdfull (2)

Output No

When asserted, the FIFO megafunction is considered full. Do not perform
write request operation when the FIFO megafunction is full.

In general, the rdfull signal is a delayed version of the wrfull signal.
However, for Stratix III devices and later, the rdfull signal function as a
combinational output instead of a derived version of the wrfull signal.
Therefore, you must always refer to the wrfull port to ensure whether or
not a valid write request operation can be performed, regardless of the
target device.

empty (1)

wrempty (2)

rdrempty (2)

Output No

When asserted, the FIFO megafunction is considered empty. Do not
perform read request operation when the FIFO megafunction is empty.

In general, the wrempty signal is a delayed version of the rdempty signal.
However, for Stratix III devices and later, the wrempty signal function as a
combinational output instead of a derived version of the rdempty signal.
Therefore, you must always refer to the rdempty port to ensure whether
or not a valid read request operation can be performed, regardless of the
target device.

almost_full (1) Output No
Asserted when the usedw signal is greater than or equal to the
almost_full_value parameter. It is used as an early indication of the
full signal.

almost_empty (1) Output No Asserted when the usedw signal is less than the almost_empty_value
parameter. It is used as an early indication of the empty signal.

usedw (1)

wrusedw (2)

rdusedw (2)

Output No

Show the number of words stored in the FIFO.

Ensure that the port width is equal to the lpm_widthu parameter if you
manually instantiate the SCFIFO megafunction or the DCFIFO
megafunction. For the DCFIFO_MIXED_WIDTH megafunction, the width
of the wrusedw and rdusedw ports must be equal to the LPM_WIDTHU and
lpm_widthu_r parameters respectively.

For Stratix, Stratix GX, and Cyclone devices, the FIFO megafunction
shows full even before the number of words stored reaches its maximum
value. Therefore, you must always refer to the full or wrfull port for
valid write request operation, and the empty or rdempty port for valid
read request operation regardless of the target device.

Notes to Table 1:

(1) Only applicable for the SCFIFO megafunction.
(2) Applicable for both of the DCFIFO megafunctions.
(3) Applicable for the SCFIFO, DCFIFO, and DCFIFO_MIXED_WIDTH megafunctions.

Table 1. Input and Output Ports Description (Part 3 of 3)

Port Type Required Description
September 2010 Altera Corporation SCFIFO and DCFIFO Megafunctions

Page 10 Specifications
Parameter Specifications
This section describes the parameters that you can use to configure the
megafunctions.

Table 2. Parameter Specifications (Part 1 of 4)

Parameter Type Required Description

lpm_width Integer Yes

Specifies the width of the data and q ports for the SCFIFO
megafunction and DCFIFO megafunction. For the
DCFIFO_MIXED_WIDTHS megafunction, this parameter
specifies only the width of the data port.

lpm_width_r (1) Integer Yes Specifies the width of the q port for the
DCFIFO_MIXED_WIDTHS megafunction.

lpm_widthu Integer Yes

Specifies the width of the usedw port for the SCFIFO
megafunction, or the width of the rdusedw and wrusedw
ports for the DCFIFO megafunction. For the
DCFIFO_MIXED_WIDTHS megafunction, it only represents
the width of the wrusedw port.

lpm_widthu_r (1) Integer Yes Specifies the width of the rdusedw port for the
DCFIFO_MIXED_WIDTHS megafunction.

lpm_numwords Integer Yes

Specifies the depths of the FIFO you require. The value must
be at least 4.

The value assigned must comply with this equation,
2LPM_WIDTHU-1 < LPM_NUMWORDS 2LPM_WIDTHU.

For example, if the lpm_widthu parameter is 3, the valid
value for the lpm_numwords parameter is 5, 6, 7, or 8.

lpm_showahead String Yes

Specifies whether the FIFO is in normal mode (OFF) or
show-ahead mode (ON).

For normal mode, the FIFO megafunction treats the rdreq
port as a normal read request that only performs read
operation when the port is asserted.

For show-ahead mode, the FIFO megafunction treats the
rdreq port as a read-acknowledge that automatically
outputs the first word of valid data in the FIFO megafunction
(when the empty or rdempty port is low) without asserting
the rdreq signal. Asserting the rdreq signal causes the
FIFO megafunction to output the next data word, if available.

If you set the parameter to ON, you may reduce
performance.

lpm_type String No Identifies the library of parameterized modules (LPM) entity
name. The values are SCFIFO and DCFIFO.

maximize_speed (2) Integer No

Specifies whether or not to optimize for area or speed. The
values are 0 through 10. The values 0, 1, 2, 3, 4, and 5
result in area optimization, while the values 6, 7, 8, 9, and
10 result in speed optimization.

This parameter is applicable for Cyclone II and Stratix II
devices only.
SCFIFO and DCFIFO Megafunctions September 2010 Altera Corporation

Specifications Page 11
overflow_checking String No

Specifies whether or not to enable the protection circuitry
for overflow checking that disables the wrreq port when the
FIFO megafunction is full. The values are ON or OFF. If
omitted, the default is ON.

underflow_checking String No

Specifies whether or not to enable the protection circuitry
for underflow checking that disables the rdreq port when
the FIFO megafunction is empty. The values are ON or OFF.
If omitted, the default is ON.

delay_rdusedw (2)

delay_wrusedw (2)
String No

Specify the number of register stages that you want to
internally add to the rdusedw or wrusedw port using the
respective parameter.

The default value of 1 adds a single register stage to the
output to improve its performance. Increasing the value of
the parameter does not increase the maximum system
speed. It only adds additional latency to the respective
output port.

add_usedw_msb_bit (2) String No

Increases the width of the rdusedw and wrusedw ports by
one bit. By increasing the width, it prevents the FIFO
megafunction from rolling over to zero when it is full. The
values are ON or OFF. If omitted, the default value is OFF.

This parameter is only applicable for Stratix and Cyclone
series (except for Stratix, Stratix GX, and Cyclone devices).

rdsync_delaypipe (2)

wrsync_delaypipe (2)
Integer No

Specify the number of synchronization stages in the cross
clock domain. The value of the rdsync_delaypipe
parameter relates the synchronization stages from the write
control logic to the read control logic; the
wrsync_delaypipe parameter relates the synchronization
stages from the read control logic to the write control logic.
Use these parameters to set the number of synchronization
stages if the clocks are not synchronized, and set the
clocks_are_synchronized parameter to FALSE.

The actual synchronization stage implemented relates
variously to the parameter value assigned, depends on the
target device.

For Cyclone II and Stratix II devices and later, the values of
these parameters are internally reduced by two. Thus, the
default value of 3 for these parameters corresponds to a
single synchronization stage; a value of 4 results in two
synchronization stages, and so on. For these devices,
choose at least 4 (two synchronization stages) for
metastability protection. Refer to “Metastability Protection
and Related Options” on page 16.

use_eab String No

Specifies whether or not the FIFO megafunction is
constructed using the RAM blocks. The values are ON or
OFF.

Setting this parameter value to OFF yields the FIFO
megafunction implemented in logic elements regardless of
the type of the TriMatrix memory block type assigned to the
ram_block_type parameter.

Table 2. Parameter Specifications (Part 2 of 4)

Parameter Type Required Description
September 2010 Altera Corporation SCFIFO and DCFIFO Megafunctions

Page 12 Specifications
write_aclr_synch (2) String No

Specifies whether or not to add a circuit that causes the
aclr port to be internally synchronized by the wrclk clock.
Adding the circuit prevents the race condition between the
wrreq and aclr ports that could corrupt the FIFO
megafunction.

The values are ON or OFF. If omitted, the default value is
OFF. This parameter is only applicable for Stratix and
Cyclone series (except for Stratix, Stratix GX, and Cyclone
devices).

clocks_are_synchronized (2) String No

Specifies whether or not the write and read clocks are
synchronized which in turn determines the number of
internal synchronization stages added for stable operation
of the FIFO. The values are TRUE and FALSE. If omitted, the
default value is FALSE. You must only set the parameter to
TRUE if the write clock and the read clock are always
synchronized and they are multiples of each other.
Otherwise, set this to FALSE to avoid metastability
problems.

If the clocks are not synchronized, set the parameter to
FALSE, and use the rdsync_delaypipe and
wrsync_delaypipe parameters to determine the number
of synchronization stages required.

ram_block_type String No

Specifies the target device’s Trimatrix Memory Block to be
used. To get the proper implementation based on the RAM
configuration that you set, allow the Quartus II software to
automatically choose the memory type by ignoring this
parameter and set the use_eab parameter to ON. This gives
the compiler the flexibility to place the memory function in
any available memory resource based on the FIFO depth
required.

add_ram_output_register String No

Specifies whether to register the q output. The values are
ON and OFF. If omitted, the default value is OFF.

You can set the parameter to ON or OFF for the SCFIFO or
the DCFIFO, that do not target Stratix II, Cyclone II, and new
devices. This parameter does not apply to these devices
because the q output must be registered in normal mode
and unregistered in show-ahead mode for the DCFIFO.

almost_full_value (3) Integer No

Sets the threshold value for the almost_full port. When
the number of words stored in the FIFO megafunction is
greater than or equal to this value, the almost_full port is
asserted.

almost_empty_value (3) Integer No
Sets the threshold value for the almost_empty port. When
the number of words stored in the FIFO megafunction is less
than this value, the almost_empty port is asserted.

allow_wrcycle_when_full (3) String No

Allows you to combine read and write cycles to an already
full SCFIFO, so that it remains full. The values are ON and
OFF. If omitted, the default is OFF. This parameter is used
only when the OVERFLOW_CHECKING parameter is set to ON.

Table 2. Parameter Specifications (Part 3 of 4)

Parameter Type Required Description
SCFIFO and DCFIFO Megafunctions September 2010 Altera Corporation

Functional Timing Requirements Page 13
Functional Timing Requirements
The wrreq signal is ignored (when FIFO is full) if you enable the overflow protection
circuitry in the FIFO MegaWizard interface, or set the OVERFLOW_CHECKING parameter
to ON. The rdreq signal is ignored (when FIFO is empty) if you enable the underflow
protection circuitry in the FIFO MegaWizard interface, or set the UNDERFLOW_CHECKING
parameter to ON.

If the protection circuitry is not enabled, you must meet the following functional
timing requirements:

■ DCFIFO

■ Deassert the wrreq signal in the same clock cycle when the wrfull signal is
deasserted.

■ Deassert the rdreq signal in the same clock cycle when the rdempty signal is
asserted.

1 You must observe these requirements regardless of expected behavior
based on wrclk and rdclk frequencies.

■ SCFIFO

■ Deassert the wrreq signal in the same clock cycle when the full signal is
asserted.

■ Deassert the rdreq signal in the same clock cycle when the empty signal is
asserted.

Figure 2 shows the behavior for the wrreq and the wrfull signals.

intended_device_family String No
Specifies the intended device that matches the device set in
your Quartus II project. This parameter is only used for
functional simulation.

Notes to Table 2:

(1) Only applicable for the DCFIFO_MIXED_WIDTHS megafunction.
(2) Only applicable for the DCFIFO.
(3) Only applicable for the SCFIFO megafunction.

Table 2. Parameter Specifications (Part 4 of 4)

Parameter Type Required Description

Figure 2. Functional Timing for the wrreq Signal and the wrfull Signal
September 2010 Altera Corporation SCFIFO and DCFIFO Megafunctions

Page 14 Output Status Flags and Latency
Figure 3 shows the behavior for the rdreq the rdempty signals.

The required functional timing for the DCFIFO as described previously is also applied
to the SCFIFO. The difference between the two modes is that for the SCFIFO, the
wrreq signal must meet the functional timing requirement based on the full signal
and the rdreq signal must meet the functional timing requirement based on the empty
signal.

Output Status Flags and Latency
The main concern in most FIFO design is the output latency of the read and write
status signals. Table 3 shows the output latency of the write signal (wrreq) and read
signal (rdreq) for the SCFIFO according to the different output modes and
optimization options.

Figure 3. Functional Timing for the rdreq Signal and the rdempty Signal

Table 3. Output Latency of the Status Flags for SCFIFO (Part 1 of 2)

Output Mode Optimization Option
(1)

Output Latency (in number of clock cycles)
(2)

Normal (3)

Speed

wrreq / rdreq to full: 1

wrreq to empty: 2

rdreq to empty: 1

wrreq / rdreq to usedw[]: 1

rdreq to q[]: 1

Area

wrreq / rdreq to full: 1

wrreq / rdreq to empty : 1

wrreq / rdreq to usedw[] : 1

rdreq to q[]: 1
SCFIFO and DCFIFO Megafunctions September 2010 Altera Corporation

Output Status Flags and Latency Page 15
Show-ahead (3)

Speed

wrreq / rdreq to full: 1

wrreq to empty: 3

rdreq to empty: 1

wrreq / rdreq to usedw[]: 1

wrreq to q[]: 3

rdreq to q[]: 1

Area

wrreq / rdreq to full: 1

wrreq to empty: 2

rdreq to empty: 1

wrreq / rdreq to usedw[]: 1

wrreq to q[]: 2

rdreq to q[]: 1

Notes to Table 3:

(1) Speed optimization is equivalent to setting the ADD_RAM_OUTPUT_REGISTER parameter to ON. Setting the parameter to OFF is equivalent to area
optimization.

(2) The information of the output latency is applicable for Stratix and Cyclone series only. It may not be applicable for legacy devices such as the
APEX® and FLEX® series.

(3) For the Quartus II software versions earlier than 9.0, the normal output mode is called legacy output mode. Normal output mode is equivalent
to setting the LPM_SHOWAHEAD parameter to OFF. For Show-ahead mode, the parameter is set to ON.

Table 3. Output Latency of the Status Flags for SCFIFO (Part 2 of 2)

Output Mode Optimization Option
(1)

Output Latency (in number of clock cycles)
(2)
September 2010 Altera Corporation SCFIFO and DCFIFO Megafunctions

Page 16 Metastability Protection and Related Options
Table 4 shows the output latency of the write signal (wrreq) and read signal (rdreq)
for the DCFIFO.

Metastability Protection and Related Options
The FIFO MegaWizard interface provides the total latency, clock synchronization,
metastability protection, area, and fMAX options as a group setting for the DCFIFO.

Table 5 shows the available group setting.

Table 4. Output Latency of the Status Flag for the DCFIFO (Note 1)

Output Latency (in number of clock cycles)

wrreq to wrfull: 1 wrclk

wrreq to rdfull: 2 wrclk cycles + following n rdclk (2)

wrreq to wrempty: 1 wrclk

wrreq to rdempty: 2 wrclk + following n rdclk (2)

wrreq to wrusedw[]: 2 wrclk

wrreq to rdusedw[]: 2 wrclk + following n + 1 rdclk (2)

wrreq to q[]: 1 wrclk + following 1 rdclk (3)

rdreq to rdempty: 1 rdclk

rdreq to wrempty: 1 rdclk + following n wrclk (2)

rdreq to rfull: 1 rdclk

rdreq to wrfull: 1 rdclk + following n wrclk (2)

rdreq to rdusedw[]: 2 rdclk

rdreq to wrusedw[]: 1 rdclk + following n + 1 wrclk (2)

rdreq to q[]: 1 rdclk

Notes to Table 4:

(1) The output latency information is only applicable for Arria® GX, Stratix, and Cyclone series (except for Stratix,
Stratix GX, Hardcopy® Stratix, and Cyclone devices). It might not be applicable for legacy devices, such as APEX
and FLEX series of devices.

(2) The number of n cycles for rdclk and wrclk is equivalent to the number of synchronization stages used and are
related to the WRSYNC_DELAYPIPE and RDSYNC_DELAYPIPE parameters. For more information about how the
actual synchronization stage (n) is related to the parameters set for different target device, refer to Table 6 on
page 17.

(3) This is applied only to Show-ahead output modes. Show-ahead output mode is equivalent to setting the
LPM_SHOWAHEAD parameter to ON.

Table 5. DCFIFO Group Setting for Latency and Related Options

Group Setting Comment

Lowest latency but requires synchronized
clocks

This option uses one synchronization stage with no metastability
protection. It uses the smallest size and provides good fMAX.

Select this option if the read and write clocks are related clocks.

Minimal setting for unsynchronized clocks This option uses two synchronization stages with good metastability
protection. It uses the medium size and provides good fMAX.

Best metastability protection, best fmax and
unsynchronized clocks

This option uses three or more synchronization stages with the best
metastability protection. It uses the largest size but gives the best fMAX.
SCFIFO and DCFIFO Megafunctions September 2010 Altera Corporation

Metastability Protection and Related Options Page 17
The group setting for latency and related options is available through the FIFO
MegaWizard interface. The setting mainly determines the number of synchronization
stages used, depending on the group setting you select. You can also set the number
of synchronization stages you desire through the WRSYNC_DELAYPIPE and
RDSYNC_DELAYPIPE parameters, but you need to understand how the actual number of
synchronization stages relates to the parameter values set in different target devices.

The number of synchronization stages set is related to the value of the
WRSYNC_DELAYPIPE and RDSYNC_DELAYPIPE pipeline parameters. For some cases, these
pipeline parameters are internally scaled down by two to reflect the actual
synchronization stage.

Table 6 shows the relationship between the actual synchronization stage and the
pipeline parameters.

Altera's TimeQuest timing analyzer includes the capability to estimate the robustness
of asynchronous transfers in your design, and to generate a report that details the
mean time between failures (MTBF) for all detected synchronization register chains.
This report includes the MTBF analysis on the synchronization pipeline you applied
between the asynchronous clock domains in your DCFIFO. You can then decide the
number of synchronization stages to use in order to meet the range of the MTBF
specification you require.

f For more information about enabling metastability analysis and reporting
metastability in the TimeQuest timing analyzer, refer to Area and Timing Optimization
chapter in volume 2, and Quartus II TimeQuest Timing Analyzer chapter in volume 3 of
the Quartus II Handbook.

Table 6. Relationship between the Actual Synchronization Stage and the Pipeline Parameters for Different Target
Devices

Stratix II, Cyclone II, and later Stratix and Cyclone Devices
in Low-Latency Version (1) Other Devices

Actual synchronization stage = value of pipeline parameter - 2
(2) Actual synchronization stage = value of pipeline parameter

Notes to Table 6:

(1) You can obtain the low-latency of the DCFIFO (for Stratix, Stratix GX, and Cyclone devices) when the clocks are not set to synchronized in Show-
ahead mode with unregistered output in the FIFO MegaWizard interface. The corresponding parameter settings for the low-latency version are
ADD_RAM_OUTPUT_REGISTER=OFF, LPM_SHOWAHEAD=ON, and CLOCKS_ARE_SYNCHRONIZED=FALSE. These parameter settings are only
applicable to Stratix, Stratix GX, and Cyclone devices.

(2) The values assigned to WRSYNC_DELAYPIPE and RDSYNC_DELAYPIPE parameters are internally reduced by 2 to represent the actual
synchronization stage implemented. Thus, the default value 3 for these parameters corresponds to a single synchronization pipe stage; a value
of 4 results in 2 synchronization stages, and so on. For these devices, choose 4 (2 synchronization stages) for metastability protection.
September 2010 Altera Corporation SCFIFO and DCFIFO Megafunctions

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Area%20and%20Timing%20Optimization
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Quartus%20II%20TimeQuest%20Timing%20Analyzer

Page 18 Synchronous Clear and Asynchronous Clear Effect
Synchronous Clear and Asynchronous Clear Effect
The FIFO megafunctions support the synchronous clear (sclr) and asynchronous
clear (aclr) signals, depending on the FIFO modes. The effects of these signals are
varied for different FIFO configurations. The SCFIFO supports both synchronous and
asynchronous clear signals while the DCFIFO support asynchronous clear signal and
asynchronous clear signal that synchronized with the write clock.

Table 7 shows the synchronous clear and asynchronous clear signals supported in the
SCFIFO.

Table 7. Synchronous Clear and Asynchronous Clear in the SCFIFO

Mode Synchronous Clear (sclr) Asynchronous Clear (aclr)

Effects on status ports

Deasserts the full and almost_full signals.

Asserts the empty and almost_empty signals.

Resets the usedw flag.

Commencement of effects upon assertion At the rising edge of the
clock. Immediate (except for the q output)

Effects on the q output for normal output modes

The read pointer is reset
and points to the first data
location. If the q output is
not registered, the output
shows the first data word
of the SCFIFO; otherwise,
the q output remains at its
previous value.

The q output remains at its previous
value.

Effects on the q output for show-ahead output modes

The read pointer is reset
and points to the first data
location. If the q output is
not registered, the output
remains at its previous
value for only one clock
cycle and shows the first
data word of the SCFIFO at
the next rising clock edge.
(1)

Otherwise, the q output
remains at its previous
value.

If the q output is not registered, the
output shows the first data word of the
SCFIFO starting at the first rising clock
edge. (1)

Otherwise, the q output remains its
previous value.

Note to Table 7:

(1) The first data word shown after the reset is not a valid Show-ahead data. It reflects the data where the read pointer is pointing to because the
q output is not registered. To obtain a valid Show-ahead data, perform a valid write after the reset.
SCFIFO and DCFIFO Megafunctions September 2010 Altera Corporation

Different Input and Output Width Page 19
Table 8 shows the asynchronous clear supported by the DCFIFO.

1 For correct timing analysis, Altera recommends enabling the Removal and Recovery
Analysis option in the Classic timing analyzer tool when you use the aclr signal. The
analysis is turned on by default in the TimeQuest timing analyzer tool.

Different Input and Output Width
The DCFIFO_MIXED_WIDTHS megafunction supports different write input data and
read output data widths if the width ratio is valid. The FIFO MegaWizard interface
prompts an error message if the combinations of the input and the output data widths
produce an invalid ratio. The supported width ratio typically in a power of 2 and
depends on the RAM used.

The megafunction supports a wide write port with a narrow read port, and vice versa.

Table 8. Asynchronous Clear in DCFIFO

Mode Asynchronous Clear (aclr) aclr (synchronize with write clock) (1), (2)

Effects on status ports

Deasserts the wrfull signal. Asserts the wrfull signal for three rising edges
of write clock before deasserting the signal.

Deasserts the rdfull signal.

Asserts the wrempty and rdempty signals.

Resets the wrusedw and rdusedw flags.

Commencement of effects
upon assertion Immediate.

Effects on the q output for
normal output modes (3) The output remains unchanged if it is not registered. If the port is registered, it is cleared.

Effect on the q output for
show-ahead output modes (3) The output shows 'X' if it is not registered. If the port is registered, it is cleared.

Notes to Table 8:

(1) The wrreq signal must be low when the DCFIFO comes out of reset (the instant when the aclr signal is deasserted) at the rising edge of the
write clock to avoid a race condition between write and reset. If this condition cannot be guaranteed in your design, the aclr signal needs to
be synchronized with the write clock. This can be done by setting the Add circuit to synchronize 'aclr' input with 'wrclk' option from the FIFO
MegaWizard interface, or setting the WRITE_ACLR_SYNCH paramter to ON.

(2) Even though the aclr signal is synchronized with the write clock, asserting the aclr signal still affects all the status flags asynchronously.
(3) For Stratix and Cyclone series (except Stratix, Stratix GX, and Cyclone devices), the DCFIFO only supports registered q output in Normal mode,

and unregistered q output in Show-ahead mode. For other devices, you have an option to register or unregister the q output (regardless of the
Normal mode or Show-ahead mode used) in the FIFO MegaWizard interface or set through the ADD_RAM_OUTPUT_REGISTER parameter.
September 2010 Altera Corporation SCFIFO and DCFIFO Megafunctions

Page 20 Different Input and Output Width
Figure 4 shows an example of a wide write port (16-bit input) and a narrow read port
(8-bit output).

In this example, the read port is operating at twice the frequency of the write port.
Writing two 16-bit words to the FIFO buffer increases the wrusedw flag to two and the
rusedw flag to four. Four 8-bit read operations empty the FIFO buffer. The read begins
with the least-significant 8 bits from the 16-bit word written followed by the most-
significant 8 bits.

Figure 5 shows an example of a narrow write port (8-bit input) with a wide read port
(16-bit output).

In this example, the read port is operating at half the frequency of the write port.
Writing four 8-bit words to the FIFO buffer increases the wrusedw flag to four and the
rusedw flag to two. Two 16-bit read operations empty the FIFO. The first and second 8-
bit word written are equivalent to the LSB and MSB of the 16-bit output words,
respectively. The rdempty signal stays asserted until enough words are written on the
narrow write port to fill an entire word on the wide read port.

Figure 4. Writing 16-bit Words and Reading 8-bit Words

Figure 5. Writing 8-Bit Words and Reading 16-Bit Words
SCFIFO and DCFIFO Megafunctions September 2010 Altera Corporation

Constraint Settings Page 21
Constraint Settings
When using the Quartus II TimeQuest timing analyzer with a design that contains a
DCFIFO block apply the following false paths to avoid timing failures in the
synchronization registers:

■ For paths crossing from the write into the read domain, apply a false path
assignment between the delayed_wrptr_g and rs_dgwp registers:

set_false_path -from [get_registers {*dcfifo*delayed_wrptr_g[*]}] -
to [get_registers {*dcfifo*rs_dgwp*}]

■ For paths crossing from the read into the write domain, apply a false path
assignment between the rdptr_g and ws_dgrp registers:

set_false_path -from [get_registers {*dcfifo*rdptr_g[*]}] -to
[get_registers {*dcfifo*ws_dgrp*}]

In the Quartus II software version 8.1 and later, the false path assignments are
automatically added through the HDL-embedded Synopsis design constraint (SDC)
commands when you compile your design. The related message is shown under the
TimeQuest timing analyzer report.

1 The constraints are internally applied but are not written to the .sdc file. To view the
embedded-false path, type report_sdc in the console pane of the TimeQuest timing
analyzer GUI.

If you use the Quartus II Classic timing analyzer, the false paths are applied
automatically for the DCFIFO.

1 If the DCFIFO is implemented in logic elements (LEs), you can ignore the cross-
domain timing violations from the data path of the DFFE array (that makes up the
memory block) to the q output register. To ensure the q output is valid, sample the
output only after the rdempty signal is deasserted.

f For more information about setting the timing constraint, refer to the Quartus II
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.
September 2010 Altera Corporation SCFIFO and DCFIFO Megafunctions

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Quartus%20II%20TimeQuest%20Timing%20Analyzer
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Quartus%20II%20TimeQuest%20Timing%20Analyzer

Page 22 Coding Example for Manual Instantiation
Coding Example for Manual Instantiation
This section provides a Verilog HDL coding example to instantiate the DCFIFO
megafunction. It is not a complete coding for you to compile, but it provides a
guideline and some comments for the required structure of the instantiation. You can
use the same structure to instantiate other megafunctions but only with the ports and
parameters that are applicable to the megafunctions you instantiated.

Example 1. Verilog HDL Coding Example to Instantiate the DCFIFO Megafunction

//module declaration
module dcfifo8x32 (aclr, data, …… ,wfull);

//Module's port declarations
input aclr;
input [31:0] data;
.
.
output wrfull;

//Module’s data type declarations and assignments
wire rdempty_w;
.
.
wire wrfull = wrfull_w;
wire [31:0] q = q_w;

/*Instantiates dcfifo megafunction. Must declare all the ports available from the
megafunction and define the connection to the module's ports.
Refer to the ports specification from the user guide for more information about the
megafunction's ports*/

//syntax: <megafunction's name> <given an instance name>
dcfifo inst1 (

//syntax: .<dcfifo's megafunction's port>(<module's port/wire>)
.wrclk (wrclk),
.rdclk (rdreq),
.
.
.wrusedw ()); //left the output open if it's not used

/*Start with the keyword “defparam”, defines the parameters and value assignments. Refer to
parameters specifications from the user guide for more information about the megafunction's
parameters*/
defparam

//syntax: <instance name>.<parameter> = <value>
inst1.intended_device_family = "Stratix III",
inst1.lpm_numwords = 8,
.
.
inst1.wrsync_delaypipe = 4;

endmodule
SCFIFO and DCFIFO Megafunctions September 2010 Altera Corporation

Design Example Page 23
Design Example
In this design example, the data from the ROM is required to be transferred to the
RAM. Assuming the ROM and RAM are driven by non-related clocks, the DCFIFO
can be used to effectively transfer the data between the asynchronous clock domains.
Figure 6 illustrates the component blocks and their signal interactions.

1 Both the DCFIFO megafunctions are only capable of handling asynchronous data
transferring issues (metastable effects). You must have a controller to govern and
monitor the data buffering process between the ROM, DCFIFO, and RAM. This
design example provides you the write control logic (write_control_logic.v), and the
read control logic (read_control_logic.v) which are complied with the DCFIFO
specifications that control the valid write or read request to or from the DCFIFO.

1 This design example is validated with its functional behavior, but without timing
analysis and gate-level simulation. The design coding such as the state machine for
the write and read controllers may not be optimized. The intention of this design
example is to show the use the megafunction, particularly on its control signal in data
buffering application, rather than the design coding and verification processes.

f To obtain the DCFIFO settings used in this design example, refer to the parameter
settings from the design file (dcfifo8x32.v). You can get all the design files including
the testbench from the dcfifo_example.zip file from the Literature: User Guides page
on the Altera website. The zip file also includes the .do script (dcfifo_de_top.do) that
automates functional simulation that you can use to run the simulation using the
ModelSim®-Altera software.

The following sections include separate simulation waveforms to describe how the
write and read control logics generate the control signal with respect to the signal
received from the DCFIFO.

Figure 6. Component Blocks and Signal Interaction

ROM
256 x 32

trclk

trclk

32

32
fifo_in

fifo_wrreq

fifo_wrfull

trclk

8

rom_out

rom_addr

Write
Control Logic

DCFIFO
8 x 32

Read
Control Logic

RAM
256 x 3232

fifo_out

32
ram_in

32

q

9
word_count

8
ram_addr

fifo_rdreq

fifo_rdempty

rvclk

rvclk rvclk

ram_wren

ram_rden
September 2010 Altera Corporation SCFIFO and DCFIFO Megafunctions

http://www.altera.com/literature/lit-ug.jsp

Page 24 Design Example
1 For better understanding, refer to the signal names in Figure 6 on page 23 when you
go through the descriptions for the simulation waveforms.

Figure 7. Initial Write Operation to the DCFIFO Megafunction

Notes to Figure 7:

(1) Before reaching 10 ns, the reset signal is high and causes the write controller to be in the IDLE state. In the IDLE state, the write controller drives
the fifo_wrreq signal to low, and requests the data to be read from rom_addr=00. The ROM is configured to have an unregistered output, so
that the rom_out signal immediately shows the data from the rom_addr signal regardless of the reset. This shortens the latency because the
rom_out signal is connected directly to the fifo_in signal, which is a registered input port in the DCFIFO. In this case, the data (00000001) is
always stable and pending to be written into the DCFIFO when fifo_wrreq signal is high during the WRITE state.

(2) The write controller transitions from the IDLE state to the WRITE state if the fifo_wrfull signal is low after the reset signal is deasserted. In
the WRITE state, the write controller drives the fifo_wrreq signal to high, and requests for write operation to the DCFIFO. The rom_addr signal
is unchanged (00) so the data is stable for at least one clock cycle before the DCFIFO actually writes in the data at the next rising clock edge.

(3) The write controller transitions from the WRITE state to the INCADR state, if the rom_addr signal has not yet increased to ff (that is, the last data
from the ROM has not been read out). In the INDADR state, the write controller drives the fifo_wrreq signal to low, and increases the rom_addr
signal by 1 (00 to 01).

(4) The same state transition continues as stated in note (2) and note (3), if the fifo_wrfull signal is low and the rom_addr signal not yet
increased to ff.
SCFIFO and DCFIFO Megafunctions September 2010 Altera Corporation

Design Example Page 25
Figure 8. Initial Read Operation from the DCFIFO Megafunction

Notes to Figure 8:

(1) Before reaching 35 ns, the read controller is in the IDLE state because the fifo_rdempty signal is high even when the reset signal is low (not
shown in the figure). In the IDLE state, the ram_addr = ff to accommodate the increment of the RAM address in the INCADR state, so that the
first data read is stored at ram_addr = 00 in the WRITE state.

(2) The read controller transitions from the IDLE state to the INCADR state, if the fifo_rdempty signal is low. In the INCADR state, the read controller
drives the fifo_rdreq signal to high, and requests for read operation from the DCFIFO. The ram_addr signal is increased by one (ff to 00), so
that the read data can be written into the RAM at ram_addr = 00.

(3) From the INCADR state, the read controller always transition to the WRITE state at the next rising clock edge. In the WRITE state, it drives the
ram_wren signal to high, and enables the data writing into the RAM at ram_addr = 00. At the same time, the read controller drives the ram_rden
signal to high so that the newly written data is output at q at the next rising clock edge. Also, it increases the word_count signal to 1 to indicate
the number of words successfully read from the DCFIFO.

(4) The same state transition continues as stated in note (2) and note (3) if the fifo_rdempty signal is low.

Figure 9. Write Operation when DCFIFO is FULL

Notes to Figure 9:

(1) When the write controller is in the INCADR state, and the fifo_wrfull signal is asserted, the write controller transitions to the WAIT state in the
next rising clock edge.

(2) In the WAIT state, the write controller holds the rom_addr signal (08) so that the respective data is written into the DCFIFO when the write
controller transitions to the WRITE state.

(3) The write controller stays in WAIT state if the fifo_wrfull signal is still high. When the fifo_wrfull is low, the write controller always
transitions from the WAIT state to the WRITE state at the next rising clock edge.

(4) In the WRITE state, then only the write controller drives the fifo_wrreq signal to high, and requests for write operation to write the data from
the previously held address (08) into the DCFIFO. It always transitions to the INCADR state in the next rising clock edge, if the rom_addr signal
has not yet increased to ff.

(5) The same state transition continues as stated in Notes (1) through (4) if the fifo_wrfull signal is high.
September 2010 Altera Corporation SCFIFO and DCFIFO Megafunctions

Page 26 Design Example
1 To verify the results, compare the q outputs with the data in rom_initdata.hex file
provided in the design example. Open the file in the Quartus II software and select
the word size as 32 bit. The q output must display the same data as in the file.

Figure 10. Completion of Data Transfer from ROM to DCFIFO

Notes to Figure 10:

(1) When the write controller is in the WRITE state, and rom_addr = ff, the write controller drives the fifo_wrreq signal to high to request for last
write operation to DCFIFO. The data 100 is the last data stored in the ROM to be written into the DCFIFO. In the next rising clock edge, the write
controller transitions to the DONE state.

(2) In the DONE state, the write controller drives the fifo_wrreq signal to low.
(3) The fifo_wrfull signal is deasserted because the read controller in the receiving domain continuously performs the read operation. However,

the fifo_wrfull signal is only deasserted sometime after the read request from the receiving domain. This is due to the latency in the DCFIFO
(rdreq signal to wrfull signal).

Figure 11. Completion of Data Transfer from DCFIFO to RAM

Notes to Figure 11:

(1) The fifo_rdempty signal is asserted to indicate that the DCFIFO is empty. The read controller drives the fifo_rdreq signal to low, and enables
the write of the last data 100 at ram_addr =ff. The word_count signal is increased to 256 (in decimal) to indicate that all the 256 words of data
from the ROM are successfully transferred to the RAM.

(2) The last data written into the RAM is shown at the q output.
SCFIFO and DCFIFO Megafunctions September 2010 Altera Corporation

Document Revision History Page 27
Document Revision History
Table 9 shows the revision history for this document.

Table 9. Document Revision History

Date Version Changes

September 2010 6.2 Added prototype and component declarations.

January 2010 6.1
■ Updated “Functional Timing Requirements” section.

■ Minor changes to the text.

September 2009 6.0

■ Replaced “FIFO Megafunction Features” section with “Configuration Methods”.

■ Updated “Input and Output Ports”.

■ Added “Parameter Specifications”, “Output Status Flags and Latency”, “Metastability
Protection and Related Options”, “Constraint Settings”, “Coding Example for Manual
Instantiation”, and “Design Example”.

February 2009 5.1 Minor update in Table 8 on page 17.

January 2009 5.0 Complete re-write of the user guide.

May 2007 4.0

■ Added support for Arria GX devices.

■ Updated for new GUI.

■ Added six design examples in place of functional

■ description.

■ Reorganized and updated Chapter 3 to have separate tables for the SCFIFO and DCFIFO
megafunctions.

■ Added Referenced Documents section.

March 2007 3.3
■ Minor content changes, including adding Stratix III and Cyclone III information

■ Re-took screenshots for software version 7.0

September 2005 3.2 Minor content changes.

April 2010 1.0 Initial release.
September 2010 Altera Corporation SCFIFO and DCFIFO Megafunctions

	SCFIFO and DCFIFO Megafunctions
	Configuration Methods
	Specifications
	Verilog HDL Prototype
	SCFIFO
	DCFIFO

	VHDL Component Declaration
	SCFIFO
	DCFIFO

	VHDL LIBRARY-USE Declaration
	Ports Specifications
	Parameter Specifications

	Functional Timing Requirements
	Output Status Flags and Latency
	Metastability Protection and Related Options
	Synchronous Clear and Asynchronous Clear Effect
	Different Input and Output Width
	Constraint Settings
	Coding Example for Manual Instantiation
	Design Example
	Document Revision History

