### **Definition of Fourier Transform**



### Connection between Fourier Transform and Laplace Transform

Compare Fourier Transform:

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

- With Laplace Transform:  $X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt$
- Setting  $s = j\omega$  in this equation yield:

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt \qquad \text{where } X(j\omega) = X(s)|_{s=j\omega}$$

- Is it true that:  $X(j\omega) = X(\omega)$  ?
- Yes only if x(t) is absolutely integrable, i.e. has finite energy:

$$\int_{-\infty}^\infty |x(t)|\,dt < \infty$$

E2.5 Signals & Linear Systems

Lecture 10 Slide 3

**Define three useful functions** 



### More about sinc(x) function

sinc (x)

 $\operatorname{sinc}\left(\frac{3\omega}{7}\right)$ 

 $14\pi$ 

L7.2 p688

Lecture 10 Slide 5



- sinc(x) = 0 when sin(x) = 0٠ except when x=0, i.e.  $x = \pm \pi$ ,  $\pm 2\pi, \pm 3\pi....$
- $\bullet$  sinc(0) = 1 (derived with L'Hôpital's rule)
- sinc(x) is the product of an oscillating signal sin(x) and a monotonically decreasing function 1/x. Therefore it is a damping oscillation with period of  $2\pi$  with amplitude decreasinc as 1/x.



E2.5 Signals & Linear Systems

## Fourier Transform of unit impulse $x(t) = \delta(t)$

• Using the sampling property of the impulse, we get:

$$\mathcal{F}[\delta(t)] = \int_{-\infty}^{\infty} \delta(t) e^{-j\omega t} dt = 1$$

IMPORTANT – Unit impulse contains COMPONENT AT EVERY FREQUENCY. ٠

 $\delta(t) \iff 1$ 



## Fourier Transform of $x(t) = rect(t/\tau)$

11

0

x(t)

Evaluation:  $X(\omega) = \int_{-\infty}^{\infty} \operatorname{rect}\left(\frac{t}{\tau}\right) e^{-j\omega t} dt$ 

• Since rect( $t/\tau$ ) = 1 for  $-\tau/2 < t < \tau/2$  and 0 otherwise



## **Inverse Fourier Transform of** $\delta(\omega)$

• Using the sampling property of the impulse, we get:

or

 $\frac{1}{2\pi} \iff \delta(\omega)$ 

$$\mathcal{F}^{-1}[\delta(\omega)] = rac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega) e^{j\omega t} d\omega = rac{1}{2\pi}$$

 $1 \iff 2\pi \delta(\omega)$ 

• Spectrum of a constant (i.e. d.c.) signal x(t)=1 is an impulse  $2\pi\delta(\omega)$ .



L7.2 p691

PYKC 8-Feb-11

### **Inverse Fourier Transform of** $\delta(\omega - \omega_0)$

• Using the sampling property of the impulse, we get:

$$\mathcal{F}^{-1}[\delta(\omega-\omega_0)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega-\omega_0) e^{j\omega t} \, d\omega = \frac{1}{2\pi} e^{j\omega_0 t}$$

Spectrum of an everlasting exponential  $e^{j\omega_0 t}$  is a single impulse at  $\omega = \omega_0$ . ٠

$$\frac{1}{2\pi} e^{j\omega_0 t} \iff \delta(\omega - \omega_0)$$
or
$$e^{j\omega_0 t} \iff 2\pi\delta(\omega - \omega_0)$$
and
$$e^{-j\omega_0 t} \iff 2\pi\delta(\omega + \omega_0)$$

#### PYKC 8-Feb-11

E2.5 Signals & Linear Systems

## Fourier Transform of any periodic signal

• Fourier series of a periodic signal x(t) with period  $T_0$  is given by:

$$x(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t} \qquad \omega_0 = \frac{2\pi}{T_0}$$

Take Fourier transform of both sides, we get: ٠

$$X(\omega) = 2\pi \sum_{n=-\infty}^{\infty} D_n \delta(\omega - n\omega_0)$$

This is rather obvious! ٠

### Fourier Transform of everlasting sinusoid $\cos \omega_0 t$

- Remember Euler formula:  $\cos \omega_0 t = \frac{1}{2} (e^{j\omega_0 t} + e^{-j\omega_0 t})$
- Use results from slide 9, we get:

 $\cos \omega_0 t \iff \pi [\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$ 

Spectrum of cosine signal has two impulses at positive and negative ٠ frequencies.





E2.5 Signals & Linear Systems

L7.2 p693 Lecture 10 Slide 10

## Fourier Transform of a unit impulse train

- Consider an impulse train  $\delta_{T_0}(t) = \sum_{n=0}^{\infty} \delta(t - nT_0)$
- The Fourier series of this impulse train can be shown to be:

$$\delta_{T_0}(t) = \sum_{-\infty}^{\infty} D_n e^{jn\omega_0 t} \quad \text{where} \quad \omega_0 = \frac{2\pi}{T_0} \quad \text{and} \quad D_n = \frac{1}{T_0}$$

Therefore using results from the last slide (slide 11), we get: ٠



L7.2 p693

L7.2 p692

Lecture 10 Slide 9

E2.5 Signals & Linear Systems

E2.5 Signals & Linear Systems

# Fourier Transform Table (1)

| No.      | x(t)               | $X(\omega)$                    |                  |
|----------|--------------------|--------------------------------|------------------|
| 1        | $e^{-at}u(t)$      | $\frac{1}{a+j\omega}$          | a > 0            |
| 2        | $e^{at}u(-t)$      | $\frac{1}{a-j\omega}$          | a > 0            |
| 3        | $e^{-a t }$        | $\frac{2a}{a^2+\omega^2}$      | a > 0            |
| 4        | $te^{-at}u(t)$     | $\frac{1}{(a+j\omega)^2}$      | a > 0            |
| 5        | $t^n e^{-at} u(t)$ | $\frac{n!}{(a+j\omega)^{n+1}}$ | a > 0            |
| 6        | $\delta(t)$        | 1                              |                  |
| 7        | 1                  | $2\pi\delta(\omega)$           |                  |
| 8        | $e^{j\omega_0 t}$  | $2\pi\delta(\omega-\omega_0)$  | L7.3 p702        |
| 8-Feb-11 |                    | E2.5 Signals & Linear Systems  | Lecture 10 Slide |

# Fourier Transform Table (2)

| No.      | x(t)                         | $X(\omega)$                                                                                            |                  |
|----------|------------------------------|--------------------------------------------------------------------------------------------------------|------------------|
| 9        | $\cos \omega_0 t$            | $\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$                                                 |                  |
| 10       | $\sin \omega_0 t$            | $j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$                                                |                  |
| 11       | u(t)                         | $\pi\delta(\omega) + \frac{1}{i\omega}$                                                                |                  |
| 12       | sgn t                        | $\frac{2}{j\omega}$                                                                                    |                  |
| 13       | $\cos \omega_0 t u(t)$       | $\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{j\omega}{\omega_0^2-\omega^2}$   |                  |
| 14       | $\sin \omega_0 t  u(t)$      | $\frac{\pi}{2j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]+\frac{\omega_0}{\omega_0^2-\omega^2}$ |                  |
| 15       | $e^{-at}\sin\omega_0 tu(t)$  | $\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$                                                            | a > 0            |
| 16       | $e^{-at}\cos\omega_0 t u(t)$ | $\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$                                                           | a > 0            |
| 8-Feb-11 |                              | E2.5 Signals & Linear Systems                                                                          | Lecture 10 Slide |

14

# Fourier Transform Table (3)

| No.      | x(t)                                                           | $X(\omega)$                                                            |                             |
|----------|----------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------|
| 16       | $e^{-at}\cos\omega_0 t u(t)$                                   | $\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$                           | <i>a</i> > 0                |
| 17       | $\operatorname{rect}\left(\frac{t}{\tau}\right)$               | $\tau \operatorname{sinc}\left(\frac{\omega\tau}{2}\right)$            |                             |
| 18       | $\frac{W}{\pi}$ sinc (Wt)                                      | $\operatorname{rect}\left(\frac{\omega}{2W}\right)$                    |                             |
| 19       | $\Delta\left(\frac{t}{\tau}\right)$                            | $\frac{\tau}{2}\operatorname{sinc}^2\left(\frac{\omega\tau}{4}\right)$ |                             |
| 20       | $\frac{W}{2\pi}\operatorname{sinc}^2\left(\frac{Wt}{2}\right)$ | $\Delta\left(\frac{\omega}{2W}\right)$                                 |                             |
| 21       | $\sum_{n=-\infty}^{\infty} \delta(t-nT)$                       | $\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$        | $\omega_0 = \frac{2\pi}{T}$ |
| 22       | $e^{-t^2/2\sigma^2}$                                           | $\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$                             | L7.3 p7                     |
| 8-Feb-11 |                                                                | E2.5 Signals & Linear Systems                                          | Lecture 10 Sli              |