Imperial College

Lecture 15

Discrete-Time System Analysis
 using \mathbf{z}-Transform
 (Lathi 5.1)

Peter Cheung
Department of Electrical \& Electronic Engineering
Imperial College London
URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_signals
E-mail: p.cheung@imperial.ac.uk

z^{-1} the sample period delay operator

- From Laplace time-shift property, we know that $z=e^{s T}$ is time advance by T second (T is the sampling period).
- Therefore $z^{-1}=e^{-s T}$ corresponds to UNIT SAMPLE PERIOD DELAY.
- As a result, all sampled data (and discrete-time system) can be expressed in terms of the variable z.
- More formally, the unilateral z-transform of a causal sampled sequence:

$$
x[n]=x[0]+x[1]+x[2]+x[3]+
$$

is given by:

$$
\begin{aligned}
X[z] & =x_{0}+x_{1} z^{-1}+x_{2} z^{-2}+x_{3} z^{-3}+\ldots . . \\
& =\sum_{n=0}^{\infty} x[n] z^{-n}
\end{aligned}
$$

- The bilateral z-transform for a general sampled sequence is:

$$
X[z]=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

z-transform derived from Laplace transform

Consider a discrete-time signal $\mathrm{x}(\mathrm{t})$ below sampled every T sec.

$x(t)=x_{0} \delta(t)+x_{1} \delta(t-T)+x_{2} \delta(t-2 T)+x_{3} \delta(t-3 T)+\ldots . .$| $\delta(t)$ | $\Leftrightarrow 1$ |
| :---: | :---: |
| $\delta(t-T)$ | $(L 6 S 5)$ |
| $e^{-s T}$ | $(L 6 S 13)$ |

- The Laplace transform of $\mathrm{x}(\mathrm{t})$ is therefore (Time-shift prop. L6S13):

$$
X(s)=x_{0}+x_{1} e^{-s T}+x_{2} e^{-s 2 T}+x_{3} e^{-s 3 T}+\ldots .
$$

- Now define $\quad z=e^{s T}=e^{(\sigma+j \omega) T}=e^{\sigma T} \cos \omega T+j e^{\sigma T} \sin \omega T$

$$
X[z]=x_{0}+x_{1} z^{-1}+x_{2} z^{-2}+x_{3} z^{-3}+\ldots
$$

| PYKC 3-Mar-11 E2.5 Signals \& Linear Systems | Lecture 15 Slide 2 |
| :--- | :--- | :--- |

Laplace, Fourier and z-Tranforms

	Definition	Purpose	Suitable for ..
Laplace transform	$X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t$	Converts integraldifferential equations to algebraic equations	Continuous-time system \& signal analysis; stable or unstable
Fourier transform	$X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$	Converts finite time signal to frequency domain	Continuous-time; stable system, convergent signals only; best for steady-state
Discrete Fourier transform	$X\left[n \omega_{0}\right]=\sum_{n=0}^{N_{0}-1} x[n] e^{j n \omega_{0} T}$ N_{0} samples, $T=$ sample period $\omega_{0}=2 \pi / T$	Converts finite discretetime signal to discrete frequency domain	Discrete time, otherwise same as FT
z transform	$X[z]=\sum_{n=-\infty}^{\infty} x[n] z^{-n}$	Converts difference equations into algebraic equations	Discrete-time system \& signal analysis; stable or unstable
PYKC 3-Mar-11		gnals \& Linear Systems	Lecture 15 Slide 4

Example of z-transform (1)

Example of z-transform (2)

- Find the z-transform for the signal $\gamma^{n} u[n]$, where γ is a constant.
- By definition $X[z]=\sum_{n=0}^{\infty} \gamma^{n} u[n] z^{-n}$
- Since $\mathrm{u}[\mathrm{n}]=1$ for all $\mathrm{n} \geq 0$ (step function),

$$
X[z]=\sum_{n=0}^{\infty}\left(\frac{\gamma}{z}\right)^{n}=1+\left(\frac{\gamma}{z}\right)+\left(\frac{\gamma}{z}\right)^{2}+\left(\frac{\gamma}{z}\right)^{3}+\cdots+\cdots
$$

- Apply the geometric progression formula:

$$
1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x} \quad \text { if } \quad|x|<1
$$

- Therefore:

$$
\begin{aligned}
X[z] & =\frac{1}{1-\frac{\gamma}{z}} & \left|\frac{\gamma}{z}\right|<1 \\
& =\frac{z}{z-\gamma} & |z|>|\gamma|
\end{aligned}
$$

z-transforms of $\delta[n]$ and $u[n]$

- Remember that by definition:

$$
X[z]=\sum_{n=0}^{\infty} x[n] z^{-n}=x[0]+\frac{x[1]}{z}+\frac{x[2]}{z^{2}}+\frac{x[3]}{z^{3}}+\cdots
$$

- Since $x[n]=\delta[n], x[0]=1$ and $x[2]=x[3]=x[4]=\cdots=0$.

$$
\delta[n] \Longleftrightarrow 1 \quad \text { for all } z
$$

- Also, for $\cdot x[n]=u[n], x[0]=x[1]=x[3]=\cdots=1$.
- Therefore $X[z]=1+\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}+\cdots$

$$
=\frac{1}{1-\frac{1}{z}} \quad\left|\frac{1}{z}\right|<1 \quad=\frac{z}{z-1} \quad|z|>1
$$

$$
u[n] \Longleftrightarrow \frac{z}{z-1} \quad|z|>1
$$

- Observe that a simple equation in z-domain results in an infinite sequence of samples.
- Observe also that $X[z]$ exists only for $|z|>|\gamma|$.
- For $|z|<|\gamma|$, X[z] may go to infinity. We call the region of z-plane where $X[z]$ exists as Region-of-Convergence (ROC), and is shown below.

PYKC 3-Mar-11
E2.5 Signals \& Linear Systems

z-transforms of $\cos \beta n u[n]$

- Since $\cos \beta n=\left(e^{j \beta n}+e^{-j \beta n}\right) / 2$
- From slide 5, we know $\gamma^{n} u[n] \Longleftrightarrow \frac{z}{z-\gamma} \quad|z|>|\gamma|$
- Hence

$$
e^{ \pm j \beta n} u[n] \Longleftrightarrow \frac{z}{z-e^{ \pm j \beta}} \quad|z|>\left|e^{ \pm j \beta}\right|=1
$$

- Therefore

$$
\begin{aligned}
X[z] & =\frac{1}{2}\left[\frac{z}{z-e^{j \beta}}+\frac{z}{z-e^{-j \beta}}\right] \\
& =\frac{z(z-\cos \beta)}{z^{2}-2 z \cos \beta+1} \quad|z|>1
\end{aligned}
$$

ecture 15 Slide

z-transforms of 5 impulses

- Find the z-tranform of:
- By definition,

$$
X[z]=1+\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}+\frac{1}{z^{4}}
$$

- Now remember the equation for sum of a power series:

$$
\sum_{k=0}^{n} r^{k}=\frac{r^{n+1}-1}{r-1}
$$

- Let $r=z^{-1}$ and $n=4$

$$
\begin{aligned}
X[z] & =\frac{z^{-5}-1}{z^{-1}-1} \\
& =\frac{z}{z-1}\left(1-z^{-5}\right)
\end{aligned}
$$

z-transform Table (2)

No.	$x[n]$	$X[z]$
10	$\frac{n(n-1)(n-2) \cdots(n-m+1)}{\gamma^{m} m!} \gamma^{n} u[n]$	$\frac{z}{(z-\gamma)^{m+1}}$
11a	$\|\gamma\|^{n} \cos \beta n u[n]$	$\frac{z(z-\|\gamma\| \cos \beta)}{z^{2}-(2\|\gamma\| \cos \beta) z+\|\gamma\|^{2}}$
11b	$\|\gamma\|^{n} \sin \beta n u[n]$	$\frac{z\|\gamma\| \sin \beta}{z^{2}-(2\|\gamma\| \cos \beta) z+\|\gamma\|^{2}}$
12a	$r\|\gamma\|^{n} \cos (\beta n+\theta) u[n]$	$\frac{r z[z \cos \theta-\|\gamma\| \cos (\beta-\theta)]}{z^{2}-(2\|\gamma\| \cos \beta) z+\|\gamma\|^{2}}$
12b	$r\|\gamma\|^{n} \cos (\beta n+\theta) u[n] \quad \gamma=\|\gamma\| e^{j \beta}$	$\frac{\left(0.5 r e^{j \theta}\right) z}{z-\gamma}+\frac{\left(0.5 r e^{-j \theta}\right) z}{z-\gamma^{*}}$
12c	$r\|\gamma\|^{n} \cos (\beta n+\theta) u[n]$	$\frac{z(A z+B)}{z^{2}+2 a z+\|\gamma\|^{2}}$

$r=\sqrt{\frac{A^{2}|\gamma|^{2}+B^{2}-2 A a B}{|\gamma|^{2}-a^{2}}} \quad \beta=\cos ^{-1} \frac{-a}{|\gamma|} \quad \theta=\tan ^{-1} \frac{A a-B}{A \sqrt{|\gamma|^{2}-a^{2}}}$
z-transform Table (1)

Inverse z-transform

- As with other transforms, inverse z-transform is used to derive $x[\mathrm{n}]$ from X[z], and is formally defined as:

$$
x[n]=\frac{1}{2 \pi j} \oint X[z] z^{n-1} d z
$$

- Here the symbol \oint indicates an integration in counterclockwise direction around a closed path in the complex z-plane (known as contour integral).
- Such contour integral is difficult to evaluate (but could be done using Cauchy's residue theorem), therefore we often use other techniques to obtain the inverse z-tranform.
- One such technique is to use the z-transform pair table shown in the last two slides with partial fraction.

Find inverse z-transform - real unique poles

- Find the inverse z-transform of:

$$
X[z]=\frac{8 z-19}{(z-2)(z-3)}
$$

- Step 1: Divide both sides by z:

$$
\frac{X[z]}{z}=\frac{8 z-19}{z(z-2)(z-3)}
$$

- Step 2: Perform partial fraction:

$$
\begin{aligned}
& \frac{X[z]}{z}=\frac{(-19 / 6)}{z}+\frac{(3 / 2)}{z-2}+\frac{(5 / 3)}{z-3} \\
& X[z]=-\frac{19}{6}+\frac{3}{2}\left(\frac{z}{z-2}\right)+\frac{5}{3}\left(\frac{z}{z-3}\right)
\end{aligned}
$$

- Step 3: Multiply both sides by z: $\quad X[z]=-\frac{19}{6}+\frac{3}{2}\left(\frac{z}{z-2}\right)+\frac{5}{3}\left(\frac{z}{z-3}\right)$
- Step 4: Obtain inverse z-transform of each term from table (\#1 \& \#6):

$$
x[n]=-\frac{19}{6} \delta[n]+\left[\frac{3}{2}(2)^{n}+\frac{5}{3}(3)^{n}\right] u[n]
$$

Find inverse z-transform - repeat real poles (2)

- To find a_{1}, let $z=0$:

$$
\frac{12}{8}=3+\frac{1}{4}+\frac{a_{1}}{4}-\frac{3}{2} \quad \Longrightarrow \quad a_{1}=-1
$$

- Therefore, we find: $\quad \frac{X[z]}{z}=\frac{-3}{z-1}-\frac{2}{(z-2)^{3}}-\frac{1}{(z-2)^{2}}+\frac{3}{z-2}$

$$
X[z]=-3 \frac{z}{z-1}-2 \frac{z}{(z-2)^{3}}-\frac{z}{(z-2)^{2}}+3 \frac{z}{z-2}
$$

- Use pairs \#6 \& \#10 $\quad 6 \quad \gamma^{n} u[n] ~ \Leftrightarrow \frac{z}{z-\gamma}$

$$
10 \quad \frac{n(n-1)(n-2) \cdots(n-m+1)}{\gamma^{m} m!} \gamma^{n} u[n] \Leftrightarrow \frac{z}{(z-\gamma)^{m+1}}
$$

$$
\begin{aligned}
x[n] & =\left[-3-2 \frac{n(n-1)}{8}(2)^{n}-\frac{n}{2}(2)^{n}+3(2)^{n}\right] u[n] \\
& =-\left[3+\frac{1}{4}\left(n^{2}+n-12\right) 2^{n}\right] u[n]
\end{aligned}
$$

Find inverse z-transform - repeat real poles (1)
$\begin{aligned} & \text { Find the inverse z-transform of: } \\ & \text { Divide both sides by } z \text { and expand: }\end{aligned} \quad X[z]=\frac{z\left(2 z^{2}-11 z+12\right)}{(z-1)(z-2)^{3}}$

$$
\frac{X[z]}{z}=\frac{2 z^{2}-11 z+12}{(z-1)(z-2)^{3}}=\frac{k}{z-1}+\frac{a_{0}}{(z-2)^{3}}+\frac{a_{1}}{(z-2)^{2}}+\frac{a_{2}}{(z-2)}
$$

- Use covering method to find k and a_{0} :

$$
k=\left.\frac{2 z^{2}-11 z+12}{(z-1)(z-2)^{3}}\right|_{z=1}=-3 \quad a_{0}=\left.\frac{2 z^{2}-11 z+12}{(z-1)(z-2)^{3}}\right|_{z=2}=-2
$$

- We get:

$$
\frac{X[z]}{z}=\frac{2 z^{2}-11 z+12}{(z-1)(z-2)^{3}}=\frac{-3}{z-1}-\frac{2}{(z-2)^{3}}+\frac{a_{1}}{(z-2)^{2}}+\frac{a_{2}}{(z-2)}
$$

- To find a_{2}, multiply both sides by z and let $z \rightarrow \infty$:

$0=-3-0+0+a_{2}$	$\Longrightarrow a_{2}=3$
PYKC 3-Mar-11	E2.5 Signals \& Linear Systems

Find inverse z-transform - complex poles (1)

- Find inverse z-tranform of:

$$
\begin{aligned}
X[z] & =\frac{2 z(3 z+17)}{(z-1)\left(z^{2}-6 z+25\right)} \\
& =\frac{2 z(3 z+17)}{(z-1)(z-3-j 4)(z-3+j 4)}
\end{aligned}
$$

-Whenever we encounter complex pole, we need to use a special partial fraction method (called quadratic factors):

$$
\frac{X[z]}{z}=\frac{2(3 z+17)}{(z-1)\left(z^{2}-6 z+25\right)}=\frac{2}{z-1}+\frac{A z+B}{z^{2}-6 z+25}
$$

- Now multiply both sides by z, and let $z \rightarrow \infty$:

$$
0=2+A \Longrightarrow A=-2
$$

- We get:

$$
\frac{2(3 z+17)}{(z-1)\left(z^{2}-6 z+25\right)}=\frac{2}{z-1}+\frac{-2 z+B}{z^{2}-6 z+25}
$$

Find inverse z-transform - complex poles (2)

- To find B, we let $z=0$:

$$
\frac{-34}{25}=-2+\frac{B}{25} \Longrightarrow B=16
$$

- Now, we have $X[z]$ in a convenient form:

$$
\frac{X[z]}{z}=\frac{2}{z-1}+\frac{-2 z+16}{z^{2}-6 z+25} \Longrightarrow X[z]=\frac{2 z}{z-1}+\frac{z(-2 z+16)}{z^{2}-6 z+25}
$$

- Use table pair \#12c, we identify $A=-2, B=16,|\gamma|=5$, and $a=-3$.

$$
\begin{aligned}
& r=\sqrt{\frac{100+256-192}{25-9}}=3.2, \quad \beta=\cos ^{-1}\left(\frac{3}{5}\right)=0.927 \mathrm{rad} \\
& \quad \theta=\tan ^{-1}\left(\frac{-10}{-8}\right)=-2.246 \mathrm{rad} \quad 12 \mathrm{c} \quad r|y|^{\mid} \cos (\beta n+\theta) u[n] \quad \Leftrightarrow \frac{z(A z+B)}{z^{2}+2 a z+|y|^{2}}
\end{aligned}
$$

- Therefore
$x[n]=\left[2+3.2(5)^{n} \cos (0.927 n-2.246)\right] u[n]$

Find inverse z-transform - long division

- Consider this example: $\quad X[z]=\frac{z^{2}(7 z-2)}{(z-0.2)(z-0.5)(z-1)}=\frac{7 z^{3}-2 z^{2}}{z^{3}-1.7 z^{2}+0.8 z-0.1}$
- Perform long division: $7+9.9 z^{-1}+11.23 z^{-2}+11.87 z^{-3}+\cdots$
$z^{3}-1.7 z^{2}+0.8 z-0.1 \frac{7+9.9 z^{-1}}{7 z^{3}-2 z^{2}}$
$7 z^{3}-11.9 z^{2}+5.60 z-0.7$
$9.9 z^{2}-16.83 z+7.92-0.99 z^{-1}$
$\frac{9.9 z^{2}-16.83 z+7.92-0.99 z^{-1}}{11.23 z-7.22+0.99 z^{-1}}$
$\frac{11.23 z-19.09+8.98 z^{-1}}{11.87-7.99 z^{-1}}$
- Thus:

$$
X[z]=\frac{z^{2}(7 z-2)}{(z-0.2)(z-0.5)(z-1)}=7+9.9 z^{-1}+11.23 z^{-2}+11.87 z^{-3}+\cdots
$$

- Therefore
$x[0]=7, x[1]=9.9, x[2]=11.23, x[3]=11.87, \ldots$

	E2.5 Signals \& Linear Systems	Lecture 15 Slide 18

