Convolution Integral

Lecture 5

Time-domain analysis:

 Convolution(Lathi 2.4)

Peter Cheung
Department of Electrical \& Electronic Engineering Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_signals E-mail: p.cheung@imperial.ac.uk

| PYKC 24-Jan-11 E2.5 Signals \& Linear Systems | Lecture 5 Slide 1 |
| :--- | :--- | :--- |

Convolution Table (1)

Use table to find convolution results easily:			
No.	$x_{1}(t)$	$x_{2}(t)$	$x_{1}(t) * x_{2}(t)=x_{2}(t) * x_{1}(t)$
1	$x(t)$	$\delta(t-T)$	$x(t-T)$
2	$e^{\lambda t} u(t)$	$u(t)$	$\frac{1-e^{\lambda t}}{-\lambda} u(t)$
3	$u(t)$	$u(t)$	$t u(t)$
4	$e^{\lambda_{1} t} u(t)$	$e^{\lambda_{2} t} u(t)$	$\frac{e^{\lambda_{1} t}-e^{\lambda_{2} t}}{\lambda_{1}-\lambda_{2}} u(t)$
$e^{\lambda t} u(t)$	$e_{1} \neq \lambda_{2}$		
5	$t e^{\lambda t} u(t)$	$e^{\lambda t} u(t)$	
6	E2.5 Signals \& Linear Systems		
PYKC 24-Jan-11			

- Convolution Integral:

$$
y(t)=x(t) * h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

- System output (i.e. zero-state response) is found by convolving input $x(t)$ with System's impulse response h(t).

PYKC 24-Jan-11
E2. 5 Signals \& Linear Systems
Lecture 5 Slide 2

Convolution Table (2)

No.	$x_{1}(t)$	$x_{2}(t)$	$x_{1}(t) * x_{2}(t)=x_{2}(t) * x_{1}(t)$
7	$t^{N} u(t)$	$e^{\lambda^{\lambda} u(t)}$	$\frac{N!e^{\lambda^{2}}}{\lambda^{N+1}} u(t)-\sum_{k=0}^{N} \frac{N!t^{N-k}}{\lambda^{k+1}(N-k)!} u(t)$
8	$t^{M} u(t)$	$\frac{M!N!}{(M+N+1)!} t^{M+N+1} u(t)$	
9	$t e^{\lambda_{1} t} u(t)$	$e^{N} u(t)$	$\frac{e^{\lambda_{2} t}-e^{\lambda_{1} t}+\left(\lambda_{1}-\lambda_{2}\right) t e^{\lambda_{1} t}}{\left(\lambda_{1}-\lambda_{2}\right)^{2}} u(t)$
10	$t^{M} e^{\lambda^{\lambda} u(t)}$		
11	$t^{M} e^{\lambda_{1} t} u(t)$	$\frac{M!N!}{(N+M+1)!} t^{M+N+1} e^{\lambda^{N} u(t)}$	

Convolution Table (3)

Example (1)

Find the loop current $\mathrm{y}(\mathrm{t})$ of the RLC circuits for input $x(t)=10 e^{-3 t} u(t)$ when all the initial conditions are zero.

- We have seen in slide 4.5 that the system equation is:

$$
\left(D^{2}+3 D+2\right) y(t)=D x(t)
$$

- The impulse response $h(t)$ was obtained in 4.6:

$$
h(t)=\left(2 e^{-2 t}-e^{-t}\right) u(t)
$$

- The input is: $x(t)=10 e^{-3 t} u(t)$
- Therefore the response is:

$$
\begin{aligned}
y(t) & =x(t) * h(t) \\
& =10 e^{-3 t} u(t) *\left[2 e^{-2 t}-e^{-t}\right] u(t)
\end{aligned}
$$

When input is complex

- What happens if input $x(t)$ is not real, but is complex?
- If $x(t)=x_{r}(t)+j x_{i}(t)$, where $x_{r}(t)$ and $x_{i}(t)$ are the real and imaginary part of $x(t)$, then

$$
\begin{aligned}
y(t) & =h(t) *\left[x_{r}(t)+j x_{i}(t)\right] \\
& =h(t) * x_{r}(t)+j h(t) * x_{i}(t) \\
& =y_{r}(t)+j y_{i}(t)
\end{aligned}
$$

- That is, we can consider the convolution on the real and imaginary components separately.

No.	$x_{1}(t)$	$x_{2}(t)$	$(t) * x_{2}(t)=x_{2}(t) * x_{1}(t)$	
4	$e^{\lambda_{1} t} u(t)$	$e^{\lambda_{2} t} u(t)$	$\frac{e^{\lambda_{1} t}-e^{\lambda_{2} t}}{\lambda_{1}-\lambda_{2}} u(t)$	$\lambda_{1} \neq \lambda_{2}$
PYKC 24-Jan-11		E2.5 Signals \& Linear Systems	L2.4 p178	

Intuitive explanation of convolution

Convolution using graphical method (1)

- Assume the impulse response decays linearly from $t=0$ to zero at $t=1$.
- Divide input $x(\tau)$ into pulses.
- The system response at t is then determined by $\mathrm{x}(\tau)$ weighted by $\mathrm{h}(\mathrm{t}-\tau)$ (i.e. $x(\tau) h(t-\tau)$) for the shaded pulse, PLUS the contribution from all the previous pulses of $x(\tau)$.
- The summation of all these weighted inputs is the convolution integral.

$$
\begin{aligned}
y(t) & =x(t)^{*} h(t) \\
& =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
\end{aligned}
$$

PYKC 24-Jan-11

gral.

$h(t-\tau)$

Convolution using graphical method (2)

$$
\begin{aligned}
y(t) & =\int_{0}^{t} e^{-\tau} e^{-2(t-\tau)} d \tau \\
& =e^{-2 t} \int_{0}^{t} e^{\tau} d \tau \\
& =e^{-t}-e^{-2 t}
\end{aligned}
$$

Moreover, $y(t)=0$ for $t<0$, so that

$$
y(t)=\left(e^{-t}-e^{-2 t}\right) u(t)
$$

Determine graphically $y(t)=x(t) * h(t)$ for $x(t)=e^{-t} u(t)$ and $h(t)=e^{-2 t} u(t)$.

Remember: variable of integration is τ, not t

Interconnected Systems

Interconnected Systems

Natural vs Forced Responses

- We can collect the e^{-t} and $e^{-2 t}$ terms together, and call these the NATURAL response.
- The remaining $e^{-3 t}$ which is NOT a characteristic mode is the FORCED response.

$$
\text { total current }=\underbrace{\left(-10 e^{-t}+25 e^{-2 t}\right)}+\underbrace{\left(-15 e^{-3 t}\right)}_{\text {fered response ver }(t)} \quad t \geq 0
$$

Total Response

$$
\begin{aligned}
& \text { Total response }=\text { zero-input response }+ \text { zero-state response } \\
& \text { total response }=\underbrace{\sum_{k=1}^{N} c_{k} e^{\lambda_{e} t}}_{z=r \text {-input component }}+\underbrace{x(t) * h(t)}_{z e r o-s t a t e ~ c o m p o n e n t}
\end{aligned}
$$

- Let us put everything together, using our RLC circuit as an example.
- Let us assume $x(t)=10 e^{-3 t} u(t), y(0)=0, \quad \dot{y}(0)=-5$.
- In earlier slides, we have shown that

total current $=\underbrace{\left(-5 e^{-t}+5 e^{-2 t}\right)}_{\text {zero-input current }}$	$+\underbrace{\left(-5 e^{-t}+20 e^{-2 t}-15 e^{-3 t}\right)}_{\text {zero-state current }} \quad t \geq 0$
PYKC 24-Jan-11	
E2.5 Signals \& Linear Systems	L2.4-5 p197
Lecture 5 Slide 14	

Additional Example

