Imperial College London

Convolution Integral

 $y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$

System output (i.e. zero-state response) is found by convolving input x(t) with System's impulse response h(t).

Department of Electrical & Electronic Engineering Imperial College London

Peter Cheung

Lecture 5

Time-domain analysis:

Convolution

(Lathi 2.4)

URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_signals E-mail: p.cheung@imperial.ac.uk

PYKC	24-Jan-11
------	-----------

E2.5 Signals & Linear Systems

Lecture 5 Slide 1

Convolution Table (1)

No.	$x_1(t)$	$x_2(t)$	$x_1(t) * x_2(t) = x_2(t) * x_1(t)$
1	x(t)	$\delta(t-T)$	x(t-T)
2	$e^{\lambda t}u(t)$	u(t)	$\frac{1-e^{\lambda t}}{-\lambda}u(t)$
3	u(t)	u(t)	tu(t)
4	$e^{\lambda_1 t}u(t)$	$e^{\lambda_2 t}u(t)$	$\frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2} u(t) \qquad \lambda_1 \neq \lambda$
5	$e^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$te^{\lambda t}u(t)$
6	$te^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$\frac{1}{2}t^2e^{\lambda t}u(t)$
YKC 24-Jan	-11	E2.5 Signals & Linear System	ns Lecture

Convolution Table (2)

	*1(+)	$x_2(t)$	$x_1(t) * x_2(t) = x_2(t) * x_1(t)$
7	$t^N u(t)$	$e^{\lambda t}u(t)$	$\frac{N! e^{\lambda t}}{\lambda^{N+1}} u(t) - \sum_{k=0}^{N} \frac{N! t^{N-k}}{\lambda^{k+1} (N-k)!} u(t)$
8	$t^M u(t)$	$t^N u(t)$	$\frac{M!N!}{(M+N+1)!} t^{M+N+1} u(t)$
9	$te^{\lambda_1 t}u(t)$	$e^{\lambda_2 t}u(t)$	$\frac{e^{\lambda_2 t} - e^{\lambda_1 t} + (\lambda_1 - \lambda_2)te^{\lambda_1 t}}{(\lambda_1 - \lambda_2)^2} u(t)$
10	$t^M e^{\lambda t} u(t)$	$t^N e^{\lambda t} u(t)$	$\frac{M!N!}{(N+M+1)!}t^{M+N+1}e^{\lambda t}u(t)$
11	$t^M e^{\lambda_1 t} u(t)$	$t^N e^{\lambda_2 t} u(t)$	$\sum_{k=0}^{M} \frac{(-1)^{k} M! (N+k)! t^{M-k} e^{\lambda_{1} t}}{k! (M-k)! (\lambda_{1}-\lambda_{2})^{N+k+1}} u(t)$
	$\lambda_1 \neq \lambda_2$		$+\sum_{k=0}^{N}\frac{(-1)^{k}N!(M+k)!t^{N-k}e^{\lambda_{2}t}}{k!(N-k)!(\lambda_{2}-\lambda_{1})^{M+k+1}}u(t)$

Convolution Table (3)

No.	$x_1(t)$	$x_2(t)$	$x_1(t) * x_2(t) = x_2(t) * x_1(t)$
12	$e^{-\alpha t}\cos{(\beta t+\theta)u(t)}$	$e^{\lambda t}u(t)$	$\frac{\cos{(\theta-\phi)}e^{\lambda t}-e^{-\alpha t}\cos{(\beta t+\theta-\phi)}}{\sqrt{(\alpha+\lambda)^2+\beta^2}}u(t)$
			$\phi = \tan^{-1}[-\beta/(\alpha + \lambda)]$
13	$e^{\lambda_1 t}u(t)$	$e^{\lambda_2 t}u(-t)$	$\frac{e^{\lambda_1 t}u(t) + e^{\lambda_2 t}u(-t)}{\lambda_2 - \lambda_1} \operatorname{Re} \lambda_2 > \operatorname{Re} \lambda_1$
14	$e^{\lambda_1 t}u(-t)$	$e^{\lambda_2 t}u(-t)$	$\frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_2 - \lambda_1} u(-t)$

Example (1)

Example (2)

E2.5 Signals & Linear Systems

- Using distributive property of convolution: $y(t) = 10e^{-3t}u(t) * 2e^{-2t}u(t) - 10e^{-3t}u(t) * e^{-t}u(t)$ $= 20[e^{-3t}u(t) * e^{-2t}u(t)] - 10[e^{-3t}u(t) * e^{-t}u(t)]$
- Use convolution table pair #4:

$$y(t) = \frac{20}{-3 - (-2)} [e^{-3t} - e^{-2t}]u(t) - \frac{10}{-3 - (-1)} [e^{-3t} - e^{-t}]u(t)$$
$$= -20(e^{-3t} - e^{-2t})u(t) + 5(e^{-3t} - e^{-t})u(t)$$
$$= (-5e^{-t} + 20e^{-2t} - 15e^{-3t})u(t)$$

No.	$x_1(t)$	$x_2(t)$	$x_1(t) * x_2(t) = x_2(t) * x_1(t)$		
4	$e^{\lambda_1 t}u(t)$	$e^{\lambda_2 t}u(t)$	$\frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2} u(t)$	$\lambda_1 \neq \lambda_2$	L2.4 p178
KC 24-Jan-11	1	E2.5 Signals &	Linear Systems		Lecture 5 Slide 7

When input is complex

- What happens if input x(t) is not real, but is complex?
- If $x(t) = x_{x}(t) + ix_{x}(t)$, where $x_{x}(t)$ and $x_{i}(t)$ are the real and imaginary part of x(t), ٠ then

 $y(t) = h(t) * [x_r(t) + jx_i(t)]$ $= h(t) * x_r(t) + ih(t) * x_i(t)$

$$= y_r(t) + jy_i(t)$$

That is, we can consider the convolution on the real and imaginary components ٠ separately.

٠

PYKC 24-Jan-11

PYKC 24-Jan-11

L2.4 p177

Lecture 5 Slide 5

Intuitive explanation of convolution

h(t)

0

 $h(t-\tau)$

 $x(\tau)$

1 t->

- Assume the impulse response decays linearly from t=0 to zero at t=1.
- Divide input x(τ) into pulses.
- The system response at t is then determined by x(τ) weighted by h(t- τ) (i.e. x(τ) h(t- τ)) for the shaded pulse, PLUS the contribution from all the previous pulses of x(τ).
- The summation of all these weighted inputs is the convolution integral.

Convolution using graphical method (1)

Convolution using graphical method (2)

Interconnected Systems

Interconnected Systems

Total response = zero-input response + zero-state responsetotal response = $\sum_{k=1}^{N} c_k e^{\lambda_k t}$ + $\underbrace{x(t) * h(t)}_{\text{zero-state component}}$ • Let us put everything together, using our RLC circuit as an example.

- Let us assume $x(t) = 10e^{-3t}u(t), y(0) = 0, \dot{y}(0) = -5.$
- In earlier slides, we have shown that

PYKC 24-Jan-11	E	E2.5 Signals & Linear Systems		Lecture 5 Slide 14
	zero-input current	zero-state current		L2.4-5 p197
total current = $(-5e^{-t} + 5e^{-2t}) + (-5e^{-t} + 20e^{-2t} - 15e^{-3t})$			$t \ge 0$	

Natural vs Forced Responses

Additional Example

Lecture 5 Slide 15