Frequency Response of a LTI System

Frequency Response Example (1)

• Find the frequency response of a system with transfer function:

$$H(s) = \frac{s+0.1}{s+5}$$

- Then find the system response y(t) for input x(t) = cos2t and $x(t) = cos(10t-50^{\circ})$ ٠
- Substitute $s=j\omega$

$$H(j\omega) = \frac{j\omega + 0.1}{j\omega + 5}$$

$$|H(j\omega)| = \frac{\sqrt{\omega^2 + 0.01}}{\sqrt{\omega^2 + 25}}$$
 and $\angle H(j\omega) = \Phi(j\omega) = \tan^{-1}\left(\frac{\omega}{0.1}\right) - \tan^{-1}\left(\frac{\omega}{5}\right)$

Frequency Response Example (2)

Lecture 8 Slide 3

Frequency Response Example (3)

• For input x(t) = cos 2t, we have:

$$|H(j2)| = \frac{\sqrt{2^2 + 0.01}}{\sqrt{2^2 + 25}} = 0.372 \qquad \Phi(j2) = \tan^{-1}\left(\frac{2}{0.1}\right) - \tan^{-1}\left(\frac{2}{5}\right) = 65.3^{\circ}$$

• Therefore y(t) = 0

 $y(t) = 0.372\cos(2t + 65.3^{\circ})$

Frequency Response of delay of T sec

• H(s) of an ideal T sec delay is:

 $H(s) = e^{-sT}$ (Time-shifting property)

• Therefore

 $|H(j\omega)| = |e^{-j\omega T}| = 1$ and $\Phi(j\omega) = -\omega T$

- That is, delaying a signal by T has no effect on its amplitude.
- It results in a linear phase shift (with frequency), and a gradient of –T.
- The quantity:

is known as Group Delay.

Frequency Response Example (4)

For input x(t)=cos(10t-50°), we will use the amplitude and phase response curves directly:

Frequency Response of an ideal differentiator

Frequency Response of an ideal integrator

Bode Plot – Sketching frequency response..... without (much) calculation (2)

 Now amplitude response (in dB) is broken into building block components that are added together.

Bode Plot – Sketching frequency response..... without (much) calculation (1)

• Consider a system transfer function:

$$H(s) = \frac{K(s+a_1)(s+a_2)}{s(s+b_1)(s^2+b_2s+b_3)} = \frac{Ka_1a_2}{b_1b_3} \frac{\left(\frac{s}{a_1}+1\right)\left(\frac{s}{a_2}+1\right)}{s\left(\frac{s}{b_1}+1\right)\left(\frac{s^2}{b_2}+\frac{b_2}{b_3}s+1\right)}$$

• The **POLES** are roots of the denominator polynomial. In this case, the poles of the system are: *s*=0, *s*=-*b*₁ and the solutions of the quadratic

$$(s^2 + b_2 s + b_3) = 0$$

× /

which we assume to be complex conjugates values.

The ZEROS are roots of the numerator polynomial. In this case, the zeros of the system are: s =-a₁, s=-a₂.

PYKC 8-Feb-11

E2.5 Signals & Linear Systems

L4.9 p430

Building blocks for Bode Plots – amplitude (1)

Building blocks for Bode Plots – amplitude (2)

Bode Plots Example – amplitude (1)

- Consider this transfer function: $H(s) = \frac{20s(s+100)}{(s+2)(s+10)}$
- We re-write this as

$$S_{H(s)} = \frac{20 \times 100}{2 \times 10} \frac{s\left(1 + \frac{s}{100}\right)}{\left(1 + \frac{s}{2}\right)\left(1 + \frac{s}{10}\right)} = 100 \frac{s\left(1 + \frac{s}{100}\right)}{\left(1 + \frac{s}{2}\right)\left(1 + \frac{s}{10}\right)}$$

- Step 1: Establish where x-axis crosses the y-axis
 - Since the constant term is 100 = 40dB, x-axis cut the vertical axis at 40.
- Step 2: For each pole and zero term, draw an asymptotic plot.
 - We need to draw straight lines for zeros at origin and $\omega = 100$.
 - We need to draw straight line for poles at $\omega=2$ and $\omega=10$.
- Step 3: Add all the asymptotes.
- Step 4: Apply corrections if necessary.

Building blocks for Bode Plots – amplitude (3)

Bode Plots Example – amplitude (2)

Building blocks for Bode Plots – Phase (1)

• Now consider phase response for the earlier transfer function:

$H(j\omega) = \frac{Ka_1a_2}{b_1b_3} \frac{\left|1 + \frac{j\omega}{a_1}\right| \left|1 + \frac{j\omega}{a_2}\right|}{\left|j\omega\right| \left|1 + \frac{j\omega}{b_1}\right| \left|1 + j\frac{b_2\omega}{b_3} + \frac{(j\omega)^2}{b_2}\right|}$

• Therefore:

$$H(j\omega) = \angle \left(1 + \frac{j\omega}{a_1}\right) + \angle \left(1 + \frac{j\omega}{a_2}\right) - \angle j\omega$$
$$-\angle \left(1 + \frac{j\omega}{b_1}\right) - \angle \left[1 + \frac{jb_2\omega}{b_3} + \frac{(j\omega)^2}{b_3}\right]$$

• Again, we have three type of terms.

PYKC 8-Feb-11	E2.5 Signals & Linear Systems	Lecture 8 Slide 17

Building blocks for Bode Plots – Phase (3)

Building blocks for Bode Plots – Phase (2)

Bode Plots Example – phase (1)

Relating this lecture to other courses

- You will be applying frequency response in various areas such as filters and 2nd year control. You have also used frequency response in the 2nd year analogue electronics course. Here we explore this as a special case of the general concept of complex frequency, where the real part is zero.
- You have come across Bode plots from 2nd year analogue electronics course. Here we go deeper into where all these rules come from.
- We will apply much of what we done so far in the frequency domain to analyse and design some filters in the next lecture.

E2.5 Signals & Linear Systems

Lecture 8 Slide 21