## Frequency Response of a LTI System

## Lecture 8

Frequency Response
(Lathi 4.8 - 4.9)

Peter Cheung
Department of Electrical \& Electronic Engineering
Imperial College London
URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_signals
E-mail: p.cheung@imperial.ac.uk

$$
\begin{array}{lll}
\hline \text { PYKC 8-Feb-11 } & \text { E2.5 Signals \& Linear Systems } & \text { Lecture } 8 \text { Slide } 1
\end{array}
$$

Frequency Response Example (1)

- Find the frequency response of a system with transfer function:

$$
H(s)=\frac{s+0.1}{s+5}
$$

- Then find the system response $y(t)$ for input $x(t)=\cos 2 t$ and $x(t)=\cos \left(10 t-50^{\circ}\right)$
- Substitute $s=j \omega$

$$
H(j \omega)=\frac{j \omega+0.1}{j \omega+5}
$$

$$
|H(j \omega)|=\frac{\sqrt{\omega^{2}+0.01}}{\sqrt{\omega^{2}+25}} \quad \text { and } \quad \angle H(j \omega)=\Phi(j \omega)=\tan ^{-1}\left(\frac{\omega}{0.1}\right)-\tan ^{-1}\left(\frac{\omega}{5}\right)
$$

We have seen that LTI system response to $x(t)=e^{s t}$ is $H(s) e^{s t}$. We represent such input-output pair as:

$$
e^{s t} \Rightarrow H(s) e^{s t}
$$

- Instead of using a complex frequency, let us set $s=j \omega$, this yields:

$$
\begin{gathered}
e^{j \omega t} \Rightarrow H(j \omega) e^{j \omega t} \\
\cos \omega t=\operatorname{Re}\left(e^{j \omega t}\right) \Rightarrow \operatorname{Re}\left[H(j \omega) e^{j \omega t}\right]
\end{gathered}
$$

- It is often better to express $\mathrm{H}(\mathrm{j} \omega)$ in polar form
- Therefore

$$
H(j \omega)=|H(j \omega)| e^{j \angle H(j \omega)}
$$



Frequency Response Example (2)


## Frequency Response Example (3)

Frequency Response Example (4)

- For input $x(t)=\cos 2 t$, we have:
$|H(j 2)|=\frac{\sqrt{2^{2}+0.01}}{\sqrt{2^{2}+25}}=0.372 \quad \Phi(j 2)=\tan ^{-1}\left(\frac{2}{0.1}\right)-\tan ^{-1}\left(\frac{2}{5}\right)=65.3^{\circ}$
- Therefore

$$
y(t)=0.372 \cos \left(2 t+65.3^{\circ}\right)
$$



- For input $x(t)=\cos \left(10 t-50^{\circ}\right)$, we will use the amplitude and phase response curves directly:

$$
\begin{aligned}
& |H(j 10)|=0.894 \\
& \Phi(j 10)=\angle H(j 10)=26^{\circ}
\end{aligned}
$$

- Therefore
$y(t)=0.894 \cos \left(10 t-50^{\circ}+26^{\circ}\right)=0.894 \cos \left(10 t+24^{\circ}\right)$

Frequency Response of delay of T sec

- $\mathrm{H}(\mathrm{s})$ of an ideal T sec delay is:
$H(s)=e^{-s T} \quad$ (Time-shifting property)
- Therefore
$|H(j \omega)|=\left|e^{-j \omega T}\right|=1 \quad$ and $\quad \Phi(j \omega)=-\omega T$

- That is, delaying a signal by T has no effect on its amplitude.
- It results in a linear phase shift (with frequency), and a gradient of -T .
- The quantity:

$$
-\frac{d \Phi(\omega)}{d \omega}=\tau_{g}=\mathrm{T}
$$

is known as Group Delay.



## Frequency Response of an ideal differentiator

- $\mathrm{H}(\mathrm{s})$ of an ideal differentiator is:

$$
H(s)=s \quad \text { and } \quad H(j \omega)=j \omega=\omega e^{j \pi / 2}
$$

- Therefore

$$
|H(j \omega)|=\omega \quad \text { and } \quad \angle H(j \omega)=\frac{\pi}{2}
$$

- This agrees with:


$$
\frac{d}{d t}(\cos \omega t)=-\omega \sin \omega t=\omega \cos (\omega t+\pi / 2)
$$

- That's why differentiator is not a nice component to work with - it amplifies high frequency component (i.e. noise!).



## Frequency Response of an ideal integrator

- $\mathrm{H}(\mathrm{s})$ of an ideal integrator is:

$$
H(s)=\frac{1}{s} \quad \text { and } \quad H(j \omega)=\frac{1}{j \omega}=\frac{-j}{\omega}=\frac{1}{\omega} e^{-j \pi / 2}
$$

- Therefore

$$
|H(j \omega)|=\frac{1}{\omega} \quad \text { and } \quad \angle H(j \omega)=-\frac{\pi}{2}
$$



- This agrees with:
$\int \cos \omega t d t=\frac{1}{\omega} \sin \omega t=\frac{1}{\omega} \cos (\omega t-\pi / 2)$
- That's why integrator is a nice component to work with - it suppresses high frequency component (i.e. noise!).
$\omega \rightarrow$



## PYKC 8-Feb-11

E2.5 Signals \& Linear Systems

Bode Plot - Sketching frequency response..... without (much) calculation (2)

- Now let $\mathrm{s}=\mathrm{j} \omega$,

$$
H(j \omega)=\frac{K a_{1} a_{2}}{b_{1} b_{3}} \frac{\left|1+\frac{j \omega}{a_{1}} \|\left|1+\frac{j \omega}{a_{2}}\right|\right.}{|j \omega|\left|1+\frac{j \omega}{b_{1}}\right|\left|1+j \frac{b_{2} \omega}{b_{3}}+\frac{(j \omega)^{2}}{b_{2}}\right|}
$$



- Now amplitude response (in dB ) is broken into building block components that are added together.

Bode Plot - Sketching frequency response.....
without (much) calculation (1)

- Consider a system transfer function:

$$
H(s)=\frac{K\left(s+a_{1}\right)\left(s+a_{2}\right)}{s\left(s+b_{1}\right)\left(s^{2}+b_{2} s+b_{3}\right)}=\frac{K a_{1} a_{2}}{b_{1} b_{3}} \frac{\left(\frac{s}{a_{1}}+1\right)\left(\frac{s}{a_{2}}+1\right)}{s\left(\frac{s}{b_{1}}+1\right)\left(\frac{s^{2}}{b_{2}}+\frac{b_{2}}{b_{3}} s+1\right)}
$$

- The POLES are roots of the denominator polynomial. In this case, the poles of the system are: $s=0, s=-b_{1}$ and the solutions of the quadratic

$$
\left(s^{2}+b_{2} s+b_{3}\right)=0
$$

which we assume to be complex conjugates values

- The ZEROS are roots of the numerator polynomial. In this case, the zeros of the system are: $s=-a_{1}, s=-a_{2}$.


## Building blocks for Bode Plots - amplitude (1)

Pole term $-20 \log |j \omega|$

- Pole term $-20 \log \left|1+\frac{j \omega}{a}\right|$



## Building blocks for Bode Plots - amplitude (2)

## Building blocks for Bode Plots - amplitude (3)

- Now consider the quadratic poles: $s^{2}+b_{2} s+b_{3}$
- Better to express this as: $s^{2}+2 j \varsigma \omega_{n} s+\omega_{n}^{2}$

- The log magnitude response is:

$$
\log \text { amplitude }=-20 \log \left|1+2 j \zeta\left(\frac{\omega}{\omega_{n}}\right)+\left(\frac{j \omega}{\omega_{n}}\right)^{2}\right|
$$

For $\omega \ll \omega_{n}, \quad \log$ amplitude $\approx-20 \log 1=0$
For $\omega \gg \omega_{n}, \quad \log$ amplitude $\approx-20 \log \left|\left(-\frac{\omega}{\omega_{n}}\right)^{2}\right|=-40 \log \left(\frac{\omega}{\omega_{n}}\right)$

$$
=-40 \log \omega-40 \log \omega_{n}
$$

The exact $\log$ amplitude is

$$
\log \text { amplitude }=-20 \log \left\{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2}+4 \zeta^{2}\left(\frac{\omega}{\omega_{n}}\right)^{2}\right\}^{1 / 2}
$$

Bode Plots Example - amplitude (1)

- Consider this transfer function: $H(s)=\frac{20 s(s+100)}{(s+2)(s+10)}$
- We re-write this as

$$
H(s)=\frac{20 \times 100}{2 \times 10} \frac{s\left(1+\frac{s}{100}\right)}{\left(1+\frac{s}{2}\right)\left(1+\frac{s}{10}\right)}=100 \frac{s\left(1+\frac{s}{100}\right)}{\left(1+\frac{s}{2}\right)\left(1+\frac{s}{10}\right)}
$$

- Step 1: Establish where $x$-axis crosses the $y$-axis
- Since the constant term is $100=40 \mathrm{~dB}, \mathrm{x}$-axis cut the vertical axis at 40 .
- Step 2: For each pole and zero term, draw an asymptotic plot.
- We need to draw straight lines for zeros at origin and $\omega=100$.
- We need to draw straight line for poles at $\omega=2$ and $\omega=10$.
- Step 3: Add all the asymptotes.
- Step 4: Apply corrections if necessary.
- Elsewhere, the exact log amplitude is:


Bode Plots Example - amplitude (2)


## Building blocks for Bode Plots - Phase (1)

- Now consider phase response for the earlier transfer function:

$$
H(j \omega)=\frac{K a_{1} a_{2}}{b_{1} b_{3}} \frac{\left|1+\frac{j \omega}{a_{1}}\right|\left|1+\frac{j \omega}{a_{2}}\right|}{|j \omega|\left|1+\frac{j \omega}{b_{1}}\right|\left|1+j \frac{b_{2} \omega}{b_{3}}+\frac{(j \omega)^{2}}{b_{2}}\right|}
$$

- Therefore.

$$
\begin{aligned}
\angle H(j \omega)= & \angle\left(1+\frac{j \omega}{a_{1}}\right)+\angle\left(1+\frac{j \omega}{a_{2}}\right)-\angle j \omega \\
& -\angle\left(1+\frac{j \omega}{b_{1}}\right)-\angle\left[1+\frac{j b_{2} \omega}{b_{3}}+\frac{(j \omega)^{2}}{b_{3}}\right]
\end{aligned}
$$

- Again, we have three type of terms.


## Building blocks for Bode Plots - Phase (3)

Building blocks for Bode Plots - Phase (2)

- Pole term
$\angle H(j \omega)=-\angle j \omega=-90^{\circ}$
- Pole term

$\angle H(j \omega)=-\angle\left(1+\frac{j \omega}{a}\right)=-\tan ^{-1}\left(\frac{\omega}{a}\right)$
for $\omega \ll a$,

$$
-\tan ^{-1}\left(\frac{\omega}{a}\right) \approx 0
$$

for $\omega \gg a$,

$$
-\tan ^{-1}\left(\frac{\omega}{a}\right) \approx-90^{\circ}
$$



Bode Plots Example - phase (1)


## Relating this lecture to other courses

- You will be applying frequency response in various areas such as filters and $2^{\text {nd }}$ year control. You have also used frequency response in the $2^{\text {nd }}$ year analogue electronics course. Here we explore this as a special case of the general concept of complex frequency, where the real part is zero.
- You have come across Bode plots from $2^{\text {nd }}$ year analogue electronics course. Here we go deeper into where all these rules come from.
- We will apply much of what we done so far in the frequency domain to analyse and design some filters in the next lecture.

