Exercise B — Bubble Sort: Example of a good routine Exercise B/1

Bubble Sort of Numbers

E The listing here shows a well-written program (ExerciseB.cpp) to
demonstrate the bubble sort algorithm. However, the actual
P 4 sorting algorithm does not exist and you must write this yourself.

= The algorithm can be described in English as follows:

1. Suppose the array has n elements, run down the array
@C= comparing adjacent elements (ie: first with second, then second
5 with third, and so on).

2. If they are in the wrong order, swap them.
=

@ 3. Repeat this process until you run through the whole array once
without swapping anything. Then the array is sorted.

B Read through the listing carefully and make sure that you
= understand everything. Ask a Lab Demonstrator if you have any
guestion, no matter how trivial.

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Exercise B — Bubble Sort: Example of a good routine Exercise B/2

e Download from the course web page:

the source file ExerciseB.cpp, or type in the program yourself. The
advantage of typing it in yourself is that you will be forced to think
about the code carefully.

= Design the bubble sort routine in pseudocode.
= Code the routine and test it for various size of data arrays.

e Note that IN and OUT are replaced by nothing (i.e. removed) when
the program is compiled. They are dummy keywords to make the
code interface better documented.

= Apply the principles covered during the lecture in writing this routine.

e cMaxDataSize is defined as 100 in this code. You can alter just this
single value to anything (say 100000) to change the upper limit for the
entire program.

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

ExerciseB.cpp

#include <stdlib.h>
#include <conio.h>
#include <iostream.h>

#define cMaxDataSize 100
#define IN
#define OUT

// Function to generate an array of random integer numbers
void GenerateData (

IN int size, // number of data values to generate
OUT int *array // data array returned as reference
) A

int 1i; // local index

randomize () ; // function to initialize

//random number generator
// Fill array with random values
for(i1i=0; i<size; i++
array[i] = rand();
}

}

// Function to output the array on console window
void DisplayArray (

IN int size, // number of data values to generate

IN int *array // data array containing data to display
)

int 1i; // local index

// Output data one value per line to console window
for(i1i=0; i<size; i++

cout << arrayl[i] << endl;
cout << endl; // output a blank line

}

// Function to sort array into ascending order
void BubbleSort (
IN int size, // number of data values to sort
IN OUT int *array // original data array on entry
(// sorted array on exit
)

/* THE FOLLOWING THREE LINES ARE DUMMY CODE (called Stubs). */

/* These lines do not perform sorting, but allow the */
/* rest of the code to be tested. */
/* REPLACE this FOR-LOOP with your bubble sort code. */
int 1i;
for(i1i=0; i<size; i++
array[i] = arrayl[i];

}

// Main Program - does not take any input argument
int main()

{

int DataSize; // no of data in arrays
int DataArray[cMaxDataSize]; // original data array
int SortedArray([cMaxDataSizel; // array with sorted data

// input no of data required. must be less than maximum
cout << "Enter size of array (0 - cMaxDataSize): ";
cin >> DataSize;

// 1f requesting too many data values, report error
if (DataSize > cMaxDataSize)
cout << "Data size too large - abort program" << endl;

// otherwise if one or more data value exists
else if (DataSize > 0)
// generate an array of random data

Page 1

ExerciseB.cpp
GenerateData(DataSize, DataArray) ;
// display original array in console window
cout << "Original Data\n";

DisplayArray(DataSize, DataArray);

// sort the data array
BubbleSort (DataSize, DataArray);

// display both original and sorted array in console window

cout << "Sorted Data\n";

DisplayArray(DataSize, DataArray);
cout << "Press any key to terminate"; getch();
return 0;

Page 2

