
10.1Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

• The next two lectures cover parsing.

• To parse a sentence in a formal language is to
break it down into its syntactic components.

• Parsing is one of the most basic functions every
compiler carries out, as well has having many
other uses.

• In this lecture, we’ll be looking at how to define a
formal language, and we’ll study an example of
parsing and evaluating an arithmetic expression.

10.2Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

• Parsing is an operation that’s carried out on formally defined
languages. So how do we formally define a language?

• We do it using another formally defined language, called a
meta-language, such as Backus-Naur Form (or BNF).

• Here’s an example of BNF. It defines what a “product” is.

<product> ::= <number> | <product> * <number>

• This says that a product is either a number or a number
followed by “*” followed by another product. Note that it’s a
recursive definition.

• The “|” symbol is part of BNF, and it means “or”. (The “*”
symbol is not part of BNF, but is part of the language being
defined.)

10.3Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

<expression> ::= <term> |
<expression> + <term> |
<expression> – <term>

<term> ::= <factor> |
<term> * <factor> |
<term> / <factor>

<factor> ::= <number> | (<expression>)

• The following BNF definitions describe the syntax of an
arithmetic expression.

10.4Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

• From the preceding definitions, it should be clear that
the following are all syntactically correct expressions:

5
5 + 8
(5 + 8)
5 * 2 + 1
5 * (2 + 1)

• while the following are not:

+
5 +
((5 + 8)
5 * 2 + + 1

10.5Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

• Before we parse a sentence in a formal language, it’s
convenient to break it down into a list of lexemes.

• A lexeme (sometimes also called token) is the smallest
syntactic unit in a language. The following are typical kinds of
lexemes:

• Numbers (ie: numeric strings)

• Names (ie alphanumeric strings)

• Operators (including brackets) (eg: *, +, ^, etc)

• For example, the sentence “(64 + 7) * 128” is broken down
into a list of seven lexemes: “(“, “64”, “+”, “7”, “)” , “*”, and
“128”.

10.6Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

• In what follows, we’ll assume that the expression is a string
pointed to by a pointer “expression”.

• We’ll also assume we have the following access functions
are already written:

• Don’t worry about the data type string and how these access
functions are written for now. We will deal with them later.

10.7Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

• Here’s the BNF for an expression again.

<expression> ::= <term> |
<expression> + <term> |
<expression> – <term>

• This definition is left-recursive — the recursive part is the leftmost
item on the right-hand-side on the definition. If we translated this
directly into a recursive procedure, it would go into an infinite loop.

• Here’s a right-recursive version which defines the same thing.

<expression> ::= <term> |
<term> + <expression> |
<term> – <expression>

• The right-recursive version can be translated directly into a recursive
parsing procedure, but processes expressions in the reverse order to
what we require.

• So we use the left-recursive version, and translate it into an iterative
procedure.

10.8Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

• Here’s the BNF again.

<expression> ::= <term> |
<expression> + <term> |
<expression> – <term>

• To evaluate an expression E iteratively, this is what you do.

• Evaluate the next term in E, and call the result X.

• While the next character in E is an operator (“+” or “–”),

• Read past the operator.

• Evaluate the next term in E, calling the result Y.

• Let X be X + Y or X – Y, depending on the operator.

• The value of E is the final value of X.

10.9Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

• Here’s the C++ code. It should be self-explanatory.

10.10Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

• Evaluating a term is almost identical. Here’s the BNF.

<term> ::= <factor> |
<term> * <factor> |
<term> / <factor>

• To evaluate a term T, this is what you do.

• Evaluate the next factor in T, and call the result X.

• While the next character in T is an operator (“*” or “/”),

• Read past the operator.

• Evaluate the next factor in T, calling the result Y.

• Let X be X * Y or X / Y, depending on the operator.

• The value of T is the final value of X.

10.11Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

• And here’s the C++ code.

10.12Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

• Evaluating a factor is a little different, and involves a
recursive call. Here’s the BNF again.

<factor> ::= <number> | (<expression>)

• To evaluate a factor F, this is what you do.

• If the next character in F isn’t “(“ then let X be the first
number in F.

• Otherwise evaluate the next expression in F, and call the
result X. Then read past the “)”.

• The value of F is X.

10.13Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

• Here’s the C++ code.

10.14Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

• Note that evalExpression(), evalTerm() and evalFactor() are
mutually recursive. That is:

evalExpression()---calls---evalTerm()---calls---evalFactor()

calls

• We need to use function prototype to specify functions
arguments before they are used. Here are the function
prototype for all three functions:

10.15Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

• Borland C++ understand a data type called string. Here
are some examples of access functions for string data type.
(They are actually membership functions, something we will
consider in a later lecture.)

10.16Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

• Now we can write our access routines for this program:

10.17Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

10.18Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

10.19Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

7 * (5 + 4)expression

10.20Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

7 * (5 + 4)expression

10.21Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

7 * (5 + 4)
Returns result = 7
expression string = “ *(5+4)”expression

10.22Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

(5 + 4)
result = 7

op = *

expression

10.23Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

5 + 4)expression nextChar() = (

10.24Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

5 + 4)expression nextChar() = (

10.25Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

5 + 4)expression Result = 5

10.26Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

+ 4)expression Returns temp = 4

op = +

result = 9

10.27Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

)expression result = 9

10.28Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

expression temp = 9result = 7

10.29Lecture 10 – Parsing

PYKC 5 May 2006 EE2/ISE1 Algorithms & Data Structures

expression final result = 63

