
11.1Lecture 11 – More Parsing

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

•The previous lecture looked at
evaluating an expression while parsing
it. This lecture looks at turning an
expression or sentence of a formal
language into a parse tree.

•This is what most compilers do as an
intermediate step towards compiling a
program.

•The parse tree can then be processed.
We’ll see how to evaluate an expression
from its parse tree.

11.2Lecture 11 – More Parsing

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

•A parse tree is a tree structure representing
sentences or expressions of a formal language
that mirrors the grammar of that language, as
defined by its BNF.

•For example, the parse tree for the expression

X + 2*Y – 7

would be the following.
–

+

*

2 Y

X

7

11.3Lecture 11 – More Parsing

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

• We’re going to see how to generate the parse
tree for an arithmetic expression, as defined in
the previous lecture. Here’s the BNF again.

<expression> ::= <term> |
<expression> + <term> |
<expression> – <term>

<term> ::= <factor> |
<term> * <factor> |
<term> / <factor>

<factor> ::= <number> | (<expression>)

11.4Lecture 11 – More Parsing

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

• Here’s the type declaration for a parse tree for arithmetic
expressions.

• The leaves of the tree (nodes with no sub-trees) are always
numbers. Other nodes comprise an operator and two
operands, where the operands are themselves trees.

11.5Lecture 11 – More Parsing

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

• We assume that we have the access routines to handle the
expression string as in the last lecture (see slides 10.16 –
10.18).

• We also assume the same routines to access the parse tree:

11.6Lecture 11 – More Parsing

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

• In addition, we have the following two access procedures
for building the parse tree and its leaves.

11.7Lecture 11 – More Parsing

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

• In addition, we have the following two access procedures
for building the parse tree and its leaves.

11.8Lecture 11 – More Parsing

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

• The functions that turn an arithmetic expression into a
parse tree are much like the procedures in the previous
lecture for evaluating an expression.

• To generate the parse tree T1 for an expression E, this is
what you do.

• Parse the next term in E, and let T1 be the resulting
tree.

• While the next character in E is an operator (“+” or “–
”),

• Read past the operator.

• Parse the next term in E, giving tree T2.

• Let T1 be either or , depending on the
operator.

+

T1 T2

–

T1 T2

11.9Lecture 11 – More Parsing

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

• Here’s the C++ code.

11.10Lecture 11 – More Parsing

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

• Here’s the C++ code for parsing a term. No surprises here.

11.11Lecture 11 – More Parsing

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

• Here’s the code for parsing a factor. Again, no surprises.

11.12Lecture 11 – More Parsing

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

• Here is the routine for evaluating an arithmetic expression from its
parse tree.

11.13Lecture 11 – More Parsing

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

• Here is the routine to print the tree in console window.

100*(3+4) - 10*(8/2)

