Lecture 11 — More Parsing

. [Parsing and Parse Trees

=" eThe previous lecture Ilooked at
evaluating an expression while parsing

< it. This lecture looks at turning an
@ expression or sentence of a formal
language into a parse tree.
= This Is what most compilers do as an
i Intermediate step towards compiling a
(ED program.
eThe parse tree can then be processed.
We’ll see how to evaluate an expression
ﬂ ﬂ from its parse tree.

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

11.1

Lecture 11 — More Parsing 11.2

Parse [rees

<A parse tree is a tree structure representing
sentences or expressions of a formal language
that mirrors the grammar of that language, as
defined by its BNF.

e For example, the parse tree for the expression

X+ 2*Y -7
would be the following. A
7
A
2 Y

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 11 — More Parsing

Arithmetic

EXpressions

e We’re going to see how to generate the parse
tree for an arithmetic expression, as defined in
the previous lecture. Here’s the BNF again.

<expression> ::=

<term>

<factor>

<term> |
<expression> + <term> |
<expression> — <term>

<factor> |
<term> * <factor> |
<term> / <factor>

<number> | (<expression>)

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

11.3

~ Parse Trees in C#+4

e Here’s the type declaration for a parse tree for arithmetic
expressions.

e The leaves of the tree (nodes with no sub-trees) are always
numbers. Other nodes comprise an operator and two
operands, where the operands are themselves trees.

11.4

class TreeNode {

public:
bool isLeaf; //terue for leaf node
int number; //Eilled for leaf node, else

TreeNode* leftTree; //operand 1 is another tree
TreeNode* rightTree; //operand 2 is another tree
char op; rHr +, -, * or /

typedef TreeNode* TreePtr;

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 11 — More Parsing 11.5

Aceess Routines for Parse Trees |

e \We assume that we have the access routines to handle the
expression string as in the last lecture (see slides 10.16 —
10.18).

e \We also assume the same routines to access the parse tree:

bool isLeafNode (TreePtr tree);
//returns true if tree points to leaf node

int leafValue (TreePtr tree);
/ /returns number at leaf node

char nodeOp (TreePtr tree);
//returns operator (+,-,%,/) at tree node

TreePtr leftOf (TreePtr tree);
//returns pointer of left sub-tree

TreePtr rightOf (TreePtr tree);
//returns pointer of right sub-tree

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 11 — More Parsing

Aecess Routines for Parse Trees |

e In addition, we have the following two access procedures
for building the parse tree and its leaves.

11.6

TreePtr buildLeaf (int number) {
TreePtr newNode;

newNode = new TreeNode;

newNode->isLeaf = true; //this is a leaf node
newNode - >number = number;

newNode->leftTree = NULL; //empty left tree
newNode->rightTree = NULL; //empty right tree
newNode->op = '\0'; //no operator
return newlNode;

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 11 — More Parsing 11.7

Aecess Routines for Parse Trees Il

e In addition, we have the following two access procedures
for building the parse tree and its leaves.

TreePtr buildNode (TreePtr opl, //left coperand tree

TreePtr op2, //right operand tree
char op) {
TreePtr newNode;

newNode = new TreeNode;

newlNode->isLeaf = false; //this is NOT a leaf node
newNode->leftTree = opl;

newNode->rightTree = op2;

newNode->op = op;

newNode->number = 0; / /empty number field
return newlNode;

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 11 — More Parsing

From Expressions to lrees

e The functions that turn an arithmetic expression into a
parse tree are much like the procedures in the previous
lecture for evaluating an expression.

e To generate the parse tree T1 for an expression E, this is
what you do.

e Parse the next term in E, and let T1 be the resulting
tree.

e While the next character In E is an operator (“+” or “—
",
e Read past the operator.
e Parse the next term in E, giving tree T2.
e Let T1 be either A or A , depending on the

operator. T1T T2 1T T2

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

11.8

Lecture 11 — More Parsing

Parsing an Expression

e Here’s the C++ code.

11.9

void parseExpression (string& expression,
TreePtr& expTree) {
TreePtr tempTree;
char op;

parseTerm (expression, expTree);
while ((notEmpty(expression)) &&

{{nextﬂhar{exprEESLGn}--'+'} | |
(nextChar (expression)=="-"))){
op = getNextChar (expression);

parseTerm(exXxpression, tempTree);
expTree = buildNode (expTree, tempTree,

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

oP) ;

Lecture 11 — More Parsing 11.10

Parsing a Term

 Here’s the C++ code for parsing a term. No surprises here.

void parseTerm (string& expression,
TreePtr& expTree) |
TreePtr tempTree;
char op;

parseFactor (expression, expTree);
while ((notEmpty(exXpression)) &&
((nextChar (expression)=="%") ||
(nextChar (expression)=="/"))){
op = getNextChar (expression);
parseFactor (expression, tempTree);
expTree = buildNode (expTree, tempTree, oOPp);:

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 11 — More Parsing 11.11

Parsing a Factor

e Here’s the code for parsing a factor. Again, no surprises.

void parseFactor (string& expression,
TreePtr& expTree) {

if (notEmpty(exXpression) && (nextChar (expression)!='("))
expTree = buildLeaf (getNum(expression));

aelse |
getNextChar (expression); // skip '(°
parseExpression(expression, expTree);
getNextChar (expression); // skip '")°

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 11 — More Parsing 11.12

Evaluating a Parse Tree

e Here is the routine for evaluating an arithmetic expression from its
parse tree.

int evalTree (TreePtr expTree) {
int result;

if (isLeafNode (expTree))

result = leafValue (expTree);
else {
switch (nodeOp (expTree)) {
case "+'1:
result = evalTree(leftOf (expTree)) + evalTree (rightOf (expTree));
break;
case '-'":
result = evalTree(leftOf (expTree)) - evalTree (rightOf (expTree));
break;
case '*':
result = evalTree(leftOf (expTree)) * evalTree (rightOf (expTree));
break;
case "/':
result = evalTree(leftOf (expTree)) / evalTree(rightOf (expTree));
break;
default:
result = 0;

cout << "Error in evaluating expression tree\n";

}

}

return result;

Lecture 11 — More Parsing 11.13

Printing the Tree

= Here is the routine to print the tree in console window.

vold printTree (TreePtr expTree) {
if (isLeafNode (expTree))
cout << leafValue (expTree) << endl;
else {
cout << nodeOp(expTreeae) << aendl;
printTree (leftOf (expTree)) ;
printTree(rightOf (expTree));

100*(3+4) - 10*(8/2) -

&X
) |

e
cn
Y =
o
—
o
— | D
—
—

PYKC 11 May 2006 EE2/ISE1 Algorithms & Data Structures

