
3/1Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• In this lecture*, we will

• Examine the process of software
development

• Discuss the design of routines/functions
using pseudo-code or program design
language (PDL)

• How to design and construct good quality
routines

Professor Peter Cheung
EEE, Imperial College

* CODE COMPLETE 2nd Edition, chapters 5,7,9

3/2Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

3/3Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Architectural design: Identify sub-systems.
• Abstract specification: Specify sub-systems.
• Interface design: Describe sub-system interfaces.
• Component design: Decompose sub-systems

into components and modules.
• Data structure design: Design data structures to hold

problem data.
• Algorithm design: Design algorithms for problem

functions.

3/4Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Best time to find bugs: as early as possible.

• If you find a requirement error (i.e. in specification) during
functional tests, the cost can be 25 times higher than if you find it
during the analysis phase.

3/5Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

3/6Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Project (e.g. logic_sim.prj)

Module_1 (e.g. sim_engine.cpp)

main() {
….
}

ReadCircuitFile() {
….
}

ReportErrors() {
….
}

Module_2 (e.g. graphics_library.cpp)
PlotTimeAxis() {
….
}

PlotWaveForm() {
….
}

…………

…………

3/7Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Pascal has procedures and functions.

• C++ only has functions. Procedures in C++ are those functions that
returns nothing (i.e. void functions).

• In general use function if the routine returns only ONE thing.

• Use procedure (i.e. void function) if the routine returns multiple

• It is also a common programming practise to have a function that
operates as a procedure, but returns a status value:

if (FormatOutput (Input, Formatting, Output) == Success) { …}

vs

FormatOutput (Input, Formatting, Output, Status);

If (Status == Success) { … }

3/8Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• A software package is composed of multiple, interacting modules.
• Modularity has long been seen as a key to cheap, high quality

software.
• Need to determine:

• What the modules are?
• How the modules interact with one another?

• Modularity means that each module (and/or routine) must be:
– autonomous
– coherent
– Robust

• The most obvious design method involve functional decomposition.
– This leads to programs in which procedures represent distinct logical

functions in a program.
– Examples of such functions:

• DisplayMenu()
• GetUserOptions()

• This is called procedural abstraction

3/9Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Five criteria to help evaluate modular design methods:
1. Modular decomposability;
2. Modular composability;
3. Modular understandability;
4. Modular continuity;
5. Modular protection.

3/10Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• This criterion is met if the design method supports the
decomposition of a problem into smaller sub-problems,
which can be solved independently.

• Top-down design methods fulfil this criterion; stepwise
refinement is an example of such method.

System level

Sub-system
level

3/11Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• A method satisfies this criterion if it leads to the production of modules
that may be freely combined to produce new systems.

• Composability is directly related to the issue of reusability. Examples
are:
– The Numerical Algorithm Group (NAG) libraries contain a wide range

of routines for solving problems in linear algebra, differential
equations, etc.

– The Unix shell provides a facility called a pipe, written “−”, whereby
the standard output of one program may be redirected to the
standard input of another; this convention favours composability.

• Composability is often at odds with decomposability
• top-down design tends to produce modules that may not be

composed in the way desired
• top-down design leads to modules which fulfil a specific function,

rather than a general one

3/12Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• A design method satisfies this criterion if it encourages the
development of modules which are easily understandable.
• COUNTER EXAMPLE 1. Take a thousand lines program, containing no

procedures; it’s just a long list of sequential statements. Divide it into
twenty blocks, each fifty statements long; make each block a module.

• COUNTER EXAMPLE 2. “Go to” statements.

• Related to several component characteristics
– Can the component be understood on its own?
– Are meaningful names used?
– Is the design well-documented?
– Are overly complex algorithms used?

• Informally, high complexity means many relationships between
different parts of the
design.

3/13Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• A method satisfies this criterion if it leads to the
production of software such that a small change in the
problem specification leads to a change in just one (or a
small number of) modules.

• EXAMPLE. Some projects enforce the rule that no numerical or
textual literal should be used in programs: only symbolic constants
should be used

• COUNTER EXAMPLE. Static arrays (as opposed to open arrays)
make this criterion harder to satisfy.

3/14Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• A method satisfied this criterion if it yields architectures in
which the effect of an abnormal condition at run-time only
affects one (or very few) modules

• EXAMPLE. Validating input at source prevents errors from
propagating throughout the program.

• COUNTER EXAMPLE. Using int types where subrange or short types
are appropriate.

3/15Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Few interfaces

• Small interfaces

• Explicit interfaces

• Information hiding

• Strong cohesion

Good

Bad

3/16Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• This principle states:

• If any two modules communicate, they should
exchange as little information as possible.

• COUNTER EXAMPLE. Declaring all instance variables as public!

• Coupling is a measure of the strength of the inter-
connections between system components.

• Loose coupling means component changes are unlikely to
affect other components.

• Shared variables or control information exchange lead to
tight coupling (bad).

• Loose coupling can be achieved by state
decentralization (as in objects) and component
communication via parameters or message passing.

3/17Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Module A Module B

Module C Module D

Shared data
area

Module A

A’s data

Module B

B’s data

Module D

D’s data

Module C

C’s data

Tight coupling Loose coupling

• Object-oriented systems are loosely coupled because there is
no shared state and objects communicate using message passing.

• However, an object class is coupled to its super-classes. Changes
made to the attributes or operations in a super-class propagate to
all sub-classes.

3/18Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• If two modules must communicate, they must do it so
explicitly and can easily be seen and noticed.

• If modules A and B communicate, this must be obvious
from the code of A and B.

• Why? If we change a module, we need to see which other
modules may be affected by these changes.

3/19Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• This principle states:

All information about a module, (and particularly
how the module does what it does) should be
private to the module unless it is specifically
declared otherwise.

• Thus each module should have some interface, which is
how the world sees it anything beyond that interface
should be hidden.

• The default rule:
• Make everything private unless explicitly publish the

information

3/20Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• A measure of how well a component “fits together”.

• A component should implement a single logical entity
or function.

• Cohesion is a desirable design component attribute as
when a change has to be made, it is localized in a
single cohesive component.

• Various levels of cohesion have been identified.

3/21Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Coincidental cohesion (weak)

• Parts of a component are simply
bundled together.

• Logical association (weak)

• Components which perform
similar functions are grouped.

• Temporal cohesion (weak)

• Components which are
activated at the same time are
grouped.

• Communicational cohesion
(medium)

• All the elements of a component
operate on the same input or
produce the same output.

• Sequential cohesion (medium)

• The output for one part of a
component is the input to
another part.

• Functional cohesion (strong)

• Each part of a component is
necessary for the execution of
a single function.

• Object cohesion (strong)

• Each operation provides
functionality which allows
object attributes to be
modified or inspected.

3/22Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

3/23Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Describe specific operations precisely with English-like
statements.

• Avoid the use of target programming language.

• Focus on the intention and meaning, NOT implementation.

• Write in low enough level to help generating code.

• NEVER write the code of a routine or function right away – you will
get it wrong!

• Use pseudocode or program description language (PDL) (which is a
form of pseudo English) to help the design of the routine.

Here are some guidelines of using pseudo-code

3/24Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Increment resource number by 1

Create a new structure using make_struc

If make_struc() returns NULL then return 1

Invoke OSrsrc_init to initialize a resource for the operating system

*hRsrcPtr = resource number

Return 0

3/25Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

set default status to “fail”

look up message based on error code

if error code is valid

if doing interactive processing,

display error message interactively and declare success

if doing command line processing,

log error message to command line and declare success

if error code is not valid, notify user that internal error detected

Return status information

3/26Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

3/27Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

/* This routine outputs an error message based on an error code
supplied by the calling routine. The way it outputs the message
depends on the current processing state, which it retrieves on its
own. It returns a value indicating success or failure.

*/

Status ReportErrorMessage (

ErrorCode errorToReport

)

3/28Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

…..

Status ReportErrorMessage (

ErrorCode errorToReport

) {

// set default status to “fail”
// look up message based on error code

// if error code is valid
// if doing interactive processing,
// display error message interactively and declare success

// if doing command line processing,
// log error message to command line and declare success

// if error code is not valid, notify user that internal error detected

// Return status information
}

3/29Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

…..

// set default status to “fail”

Status errorMessageStatus = Status_Failure;

// look up message based on error code
Message errorMessage = LookupErrorMessage (errorToReport);

// if error code is valid
if (errorMessage.ValidCode()) { //determine the processing method

ProcessingMethod errorProcessingMethod = CurrentProcessingMethod();

// if doing interactive processing,
// display error message interactively and declare success
if (errorProcessingMethod == ProcessingMethod_Interactive) {

DisplayInteractiveMessage(errorMessage.Text());
errorMessageStatus = Status_Success;

}

// if doing command line processing,
// log error message to command line and declare success
…….

3/30Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

…..

// if doing command line processing,
// log error message to command line and declare success

else if (errorProcessingMethod == ProcessingMethod_CommandLine) {
CommandLine messageLog;
if (messageLog.Status() == CommandLineStatus_ok) {

messageLog.AddToMessageQueue (errorMessage.Text());
messageLog.FlushMessageQueue ();
errorMessageStatus = Status_Success;

}
}

}
// if error code is not valid, notify user that internal error detected
else {

DisplayInteractiveMessage (“Internal Error: Invalid error code in ReportErrorMessage()”);
}

// return status information
return errorMessageStatus;

}

Candidate
for new
routine

3/31Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

….. // if error code is valid

if (errorMessage.ValidCode()) { //determine the processing method
ProcessingMethod errorProcessingMethod = CurrentProcessingMethod();

// if doing interactive processing,
// display error message interactively and declare success
if (errorProcessingMethod == ProcessingMethod_Interactive) {

DisplayInteractiveMessage(errorMessage.Text());
errorMessageStatus = Status_Success;

}

// if doing command line processing,
// log error message to command line and declare success

else if (errorProcessingMethod == ProcessingMethod_CommandLine) {
erroMessageStatus = DisplayCommandLineMessage();

}
}
// if error code is not valid, notify user that internal error detected
else {

DisplayInteractiveMessage (“Internal Error: Invalid error code in ReportErrorMessage()”);
}

……

3/32Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Reduce Complexity – hide details, replace deep nested loops

• Introduce an intermediate, understandable abstraction

• Makes the code a lot more readable

• Avoid duplicate code

• Encapsulate a sequence of operations

• Hide pointer operations

• Improve portability – hide nonportable parts in routines

• Simplify complicated Boolean conditionals

• Details of test hidden; descriptive function name documents code

• Improve performance – optimise code in fewer places

3/33Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• For a procedure name, use a strong verb followed by an object

– E.g. PrintReport(), CalcMonthlyRevenue(), CheckOrderInfo()…..

• For a function name, use a description of the return value

– E.g. NextStudentID(), PrinterReady(), CurrentPenColour() …

• Avoid meaningless or wishy-washy verbs

– Don’t use: ProcessInput(), DealWithOutput()

– Instead use: ReadPersonalDetails(), FormatAndPrintOutput()

• Make names of routines as long as necessary, but not longer

– Research shown that around 10 – 20 characters are realistic

• Establish conventions for common operations

– E.g. Get prefix destructive input and a Query prefix for non-
destructive input: GetInputChar() & QueryInputChar()

3/34Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Put parmeters in input-modify-output order

• Create your own IN and OUT keywords

• Use ALL parameters

• Put status or error variables last – these are
usually incidental to the main purpose of the
routine

#define IN

#define OUT

Void InvertMatrix (

IN Matrix originalMatrix,

OUT Matrix *resultMatrix

);

• Never use routine parameters as working variables. Use local
variables instead

• Document all interface careful, e.g. including all assumptions

• Limit the number of parameter to a maximum of 7

• Pass parameters by value in preference to passing them by reference
unless:

• It is modified by the routine

• It is a large structure

3/35Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Void HandleStuff (CORP_DATA &inputRec, int CrntQtr,
EMP_DATA emprRec, double &estimRevenue, double
ytdReveneue, int screenX, int screenY, COLOR_TYPE
&newColor, COLOR_TYPE &prevColor, StatusType &status,
int expenseType) {

int i;
for (i = 0; i < 100; i++) {

inputRec.revenue[i] = 0;
inputRec.expense[i] = corpExpense[crntQtr][i];
}

updateCorpDatabase(empRec);
estimRevenue = ydtRevenue * 4.0 / (double) crntQtr;
newColor = prevColor;
Status = SUCCESS;
If (expenseType == 1) {

for (i = 0; i < 12; i++)
profit[i] = revenue[i] – expense.type1[i];

}
Else if (expenseType == 2) {

profit[i] = revenue[i] – expense.type2[i];
}

Else if (expenseType == 3)
profit[i] = revenue[i] – expense.type3[i];
}

Bad name

no routine documentation

poor style & layout

inputRec should not have
this name if it is modified

use global variables
corpExpense and profit (bad!)

poor defence against bad
data (i.e. crntQtr = 0)

use “magic” numbers (e.g. 100)

3/36Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Void HandleStuff (CORP_DATA &inputRec, int CrntQtr,
EMP_DATA emprRec, double &estimRevenue, double
ytdReveneue, int screenX, int screenY, COLOR_TYPE
&newColor, COLOR_TYPE &prevColor, StatusType &status,
int expenseType) {

int i;
for (i = 0; i < 100; i++) {

inputRec.revenue[i] = 0;
inputRec.expense[i] = corpExpense[crntQtr][i];
}

updateCorpDatabase(empRec);
estimRevenue = ydtRevenue * 4.0 / (double) crntQtr;
newColor = prevColor;
Status = SUCCESS;
If (expenseType == 1) {

for (i = 0; i < 12; i++)
profit[i] = revenue[i] – expense.type1[i];

}
Else if (expenseType == 2) {

profit[i] = revenue[i] – expense.type2[i];
}

Else if (expenseType == 3)
profit[i] = revenue[i] – expense.type3[i];
}

screenX & screenY parameters
not used in routine

prevColor passed by reference
but never changed

no comments & poor
documentations

too many parameters (should be
7 or below)

routine does too many things

3/37Lecture 3 – Routines & Functions

PYKC 1 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Complete Exercise B (non-assessed) – See separate
sheet

• Either read Lesson 3 & Lesson 4 of the following C++
Tutorial on the web:

http://www.functionx.com/cppbcb/Lesson03.htm
http://www.functionx.com/cppbcb/Lesson04.htm

Alternatively, read Chapter 3 & 4 of Savitch

