
4.1Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• In this lecture*, we will

• Examine Class Objects and Structure
Objects in C++

• Find out what are pointers

• Find out the relationship between pointers
and arrays when passed as parameters

Professor Peter Cheung
EEE, Imperial College

* Savitch Chapters 6 & 12.1

4.2Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• A class is a collection of related data identified as a
single unit.

• Each element in a class is called a data member.

• After it has been declared, an instance of that class can
be created for use in a program.

• Example of a class
declaration:

Class TEmployee
{

char FirstName[10];
char LastName[20];
double TotalHours;
double HourlySalary;
double WeeklySalary;

};

4.3Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Note that WeeklySalary here
is NOT part of the data
structure

Class TEmployee
{

char FirstName[10];
char LastName[20];
double TotalHours;
double HourlySalary;
double WeeklySalary;

};

4.4Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• You can initialise a class object as it is declared:

TEmployee FullTime = {

“Chester”,

“Stanley”,

42.0,

10.63,

0

}; You have to
remember what
order your data
elements were
declared

4.5Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

FirstName (10 Bytes)

LastName (20 Bytes)

TotalHours (8 Bytes)

HourlySalary (8 Bytes)

WeeklySalary (8 Bytes)

4.6Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• By default, everything inside a class object (i.e. all the data
members) are private to the module that the object is
declared. It is not visible outside.

• In order to make its members visible, you have to explicitly
declare them as public.

• In other words, you can control the scope of the variable.
Class TEmployee
{

public:
char FirstName[10];
char LastName[20];
double TotalHours;
double HourlySalary;
double WeeklySalary;

private:
};

4.7Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• In C++, structures and classes are very similar with one
exceptions. Members within a structure are public by
default. You need to explicitly make them private.

• The opposite is true with a class.

• Example of a structure is:

4.8Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• An object (such as a class object or structure object) stored
in memory can be referred to in two ways:
– 1. The object’s content itself (e.g. the value of an integer variable)

– 2. The location at which the object is stored (e.g. the memory
address of the integer variable).

• A pointer is a variable whose value represents the location
(or address) of another object.

• Pointer objects are defined in conjunction with the unary
indirection operator * (also known as the dereferencing
operator).

int *iPtr = 0;

char *cPtr = 0;

float *fPtr = 0;

0x4A23

4.9Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• You can find out the address where a particular variable is
stored using the & operator followed by the name of the
variable.

4.10Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• What do you expect this program produces and why?

4.11Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Always remember that pointers MUST be initialised.
Otherwise your program will crash! Here are some
examples:

4.12Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

What would happen if the following code was then also
executed?

*Ptr1 = *Ptr3;

Ptr2 = Ptr3;

Ptr2

Ptr3

b

Ptr1

3a

7
*Ptr3;*Ptr1

3

4.13Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

int i = 1;

int *iPtr;

char *cPtr;

iPtr = i;

i = iPtr;

iPtr = cPtr; illegal: i is not
an int*.

illegal: cPtr is
not an int*

illegal: iPtr is
not an int.

4.14Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Some people declare pointers with ‘*’ immediately
following the type, for example:

char* cPtr;

But it can lead to a misunderstanding. For example:
char* a, b;

Hence this statement does not lead to the creation of two
pointers. Always define only one pointer per statement.

really…. char* a;
char b;

4.15Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

In C++, the name of an array is considered to be a
constant pointer.
The name of the array is associated with the memory
location of the first element in the array.
For example:

4.16Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

4.17Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Array parameters are passed into functions as
pointers! (i.e. call-by-reference). These three methods
here do the same thing.

4.18Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

In C++, you can pass parameters by reference or by value
to a function.

Call-by-reference works almost as if the
argument variable is substituted for the formal
parameter, not the argument’s value

In reality, the memory location of the argument
variable is given to the formal parameter

Whatever is done to a formal parameter in the
function body, is actually done to the value at the
memory location of the argument variable

4.19Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Call-by-value

The function call:
f(age);

void f(int var_par);

Call-by-reference in C++

The function call:
f(age);

void f(int& ref_par);

Memory

hours

initial

age

Name ContentsLocation

1004

23.51003

A1002

341001

value is
passed

address is
passed

4.20Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

C++ call-by-reference

The function call:
f(age);

The function definition:

void f(int &ref_par){

ref_par = …

}

How C does this?

The function call:
f(&age);

The function definition:

void f(int *ref_par){

*ref_par = …

}

4.21Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Just as other functions can take arguments, so can your
main function.

Generally you pass information into the main via
command line arguments, that follow the programs name
when you are executing it.

There are two special built in arguments : argv and argc,
that are used to receive information from the command
line.

argc – holds the number of arguments entered

argv – is an array of pointers to these arguments

4.22Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

int main (int argc, char *argv[])

{

if (argc!=2) {

cout << “you forgot to enter info”;

}

cout << “Hello “ << argv[1];

}

check on the
number of
arguments

statement that
ouputs the info to

the screen.

example of use if
we had compiled

the code as
myProgram.

4.23Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

This is what happens in when command line is used:

3

int main (int argc, char *argv[])

{

……….

}

4.24Lecture 4 – Class & Pointer Basics

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Complete Exercise C (non-assessed) – See separate
sheet

• Either read Lesson 8 & Lesson 15 of the following C++
Tutorial on the web:

http://www.functionx.com/cppbcb/Lesson08.htm
http://www.functionx.com/cppbcb/Lesson15.htm

Alternatively, read Chapter 6 & 12.1 of Savitch

