Lecture 4 — Class & Pointer Basics 4.1 Lecture 4 — Class & Pointer Basics 4.2
@ @
Class & Pointer Basics Classes
e A class is a collection of related data identified as a
|—|__, Professor Peter Cheung single unit.
@ EEE, Imperial College
e Each element in a class is called a data member.
Co— e In this lecture”, we will) .
_) After it has been declared, an instance of that class can
ﬁ ® Exam|ne CIaSS Objects and Structure be Created for use in a program_
uin Objects in C++
- Find out what are pointers Class TEmployee
.)) . e Example of a class {
e Find out the relationship between pointers declarr;tion' char FirstName[10];
@& and arrays when passed as parameters | char LastName[20];
double TotalHours;
double HourlySalary;
C:::L double WeeklySalary;
};
* Savitch Chapters 6 & 12.1
PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures
Lecture 4 — Class & Pointer Basics 4.3 Lecture 4 — Class & Pointer Basics 4.4

Accessing members in a class

Class TEmployee
{
char FirstName[10];
char LastName[20];
double TotalHours;
double HourlySalary;
double WeeklySalary:;
};
Note that WeeklySalary here

is NOT part of the data
structure

TEmployese FullTime;
double WeeklySalary;

FullTime.FirstName = "§
FullTime.LastName tanley";
FullTime.TotalHouy 42 .00;

FullTime.Hourl = 10.63;

WeeklySalary = FullTime.TotalHours * FullTime.HourlySalary;

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Quick Initialisation

e You can initialise a class object as it is declared:

TEmployee FullTime = {
“Chester”,
“Stanley”,

42.0,
10.63,

0

}; You have to
remember what
order your data
elements were
declared

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 4 — Class & Pointer Basics

Object in Mmemery

FirstName (10 Bytes)

LastName (20 Bytes)

TotalHours (8 Bytes)

HourlySalary (8 Bytes)

WeeklySalary (8 Bytes)

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

4.5

Lecture 4 — Class & Pointer Basics 4.6

Private vs Public

e By default, everything inside a class object (i.e. all the data
members) are private to the module that the object is
declared. It is not visible outside.

e In order to make its members visible, you have to explicitly
declare them as public.

= In other words, you can control the scope of the variable.

Class TEmployee
{
public:
char FirstName[10];
char LastName[20];
double TotalHours;
double HourlySalary;
double WeeklySalary;
private:
PYKC 8 Feb 2006 Y

Lecture 4 — Class & Pointer Basics

Structures vs Classes

e In C++, structures and classes are very similar with one
exceptions. Members within a structure are public by

default. You need to explicitly make them private.
e The opposite is true with a class. const poubie p1 = 3.14159;
e Example of a structure is: R
string Name;
Single Radius;
Single radius;
Single Area;

TDoughnut Original; Single CreameRArea;
Single Volume;

Original.Name = "Glazed"; bi

Original.Radius = 12.50;

Original.radius = 3.75;

Original.Area = 4 * PI * QOriginal.Radius * Original.radius;
Original.CreamelArea = 2 * Original.Area / 5;
Original.Veolume = 2 * PI * PI * Original.Radius *

Original.radius * Original.radius;

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

4.7

Lecture 4 — Class & Pointer Basics 4.8

What is aa pointer?

e An object (such as a class object or structure object) stored
in memory can be referred to in two ways:
— 1. The object’s content itself (e.g. the value of an integer variable)
— 2. The location at which the object is stored (e.g. the memory
address of the integer variable).
e A pointer is a variable whose value represents the location
(or address) of another object.

e Pointer objects are defined in conjunction with the unary
indirection operator * (also known as the dereferencing
operator).

0x4A23

int *iPtr = 0;

char *cPtr = 0

7
float *fPtr = 0;

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 4 — Class & Pointer Basics

4.9 Lecture 4 — Class & Pointer Basics 4.10
V] v Qs @ @ @
The address operator and operators
e You can find out the address where a particular variable is e What do you expect this program produces and why?
stored using the & operator followed by the name of the
variable. fpragma argsused
int main(int argec, char* argv[])
{
. int Value = 12;
int n = et int *Pointer = &Value;
int *Ptr.
Ptr = &number; numberlIl cout << "Value = " << Value << "\n";
f cout << "Pointer = " << %DPointer << "\n";
sets pointer to the memo Bix = [T St "
| P ry cout << "\n\nPress any key to continue...";
ocation for number
getchar () ;
return 0;
}
PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures
Lecture 4 — Class & Pointer Basics 4.11 Lecture 4 — Class & Pointer Basics 4.12

initialising peinters

* Always remember that pointers MUST be initialised.
Otherwise your program will crash! Here are some

examples:
a 3
int a = 3; L »
int b = 7;
int *Ptrl = sb; Perl —
int *Ptr2 = Ptrl; Ptr2 —
int *Ptr3 = &a; Ptr3 .

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Using peinters

e What would happen if the following code was then also

executed?
a 3
*Ptrl = *Ptr3; - 3
Ptr2 = Ptr3;
Ptrl —
Ptr2 —_—
Ptr3

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 4 — Class & Pointer Basics 4.13 Lecture 4 — Class & Pointer Basics 4.14
Common mistakes A subtile mistake
int i = 1; e Some people declare pointers with *’ immediately
int *iPtr; following the type, for example:
char *cPtr; char* cPtr;
iPtr = i; i . .
4L e e But it can lead to a misunderstanding. For example:
. e * .
iPtr = cPtr; '"e%e:,:'i:,l;f_ not char* a, b; T | really.... char*a;
\ char b;
illegal: iPtr is illegal: cPtr is e Hence this statement does not lead to the creation of two
not an int. not an int* . . .
pointers. Always define only one pointer per statement.
PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures
Lecture 4 — Class & Pointer Basics 4.15 Lecture 4 — Class & Pointer Basics 4.16

Array and pointer

e In C++, the name of an array is considered to be a
constant pointer.

e The name of the array is associated with the memory
location of the first element in the array.

e For example:

int ant[5];
int dec[7]; / Equivalent statements |
int *Ptrl = ant;
int *Ptr2 = gant[0];

"/,A Ptr3 points at dec[0] ‘
int *Ptr3 = dec;
int *Ptrd = &dec[4]:;

'\| Ptr3 points at dec[4] |

EE2/ISE1 Algorithms & Data Structures

PYKC 8 Feb 2006

Array aned polhter - MOr®asas

int myArray[4]1={10,20,30,40};
int *ptr = myArray;

W—j ptr

myArray[0] 10

myArray [0] 20

myArray [0] 30

myArray[0] 40

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 4 — Class & Pointer Basics 4.17

Passing array as parameter into functions

e Array parameters are passed into functions as
pointers! (i.e. call-by-reference). These three methods
here do the same thing.

Here we take in an void fool (int x[101) //sized array
address and use x to {
remember it as an array
with 10 elements }
void foo2 (int x[1) //unsized array

...but the length of the — {
array doesn'’t matter as

Lecture 4 — Class & Pointer Basics 4.18

Passing Parameters revisited

e In C++, you can pass parameters by reference or by value
to a function.

e Call-by-reference works almost as if the
argument variable is substituted for the formal
parameter, not the argument’s value

e In reality, the memory location of the argument
variable is given to the formal parameter

e Whatever is done to a formal parameter in the

far as C++ is concerned . .
! function body, is actually done to the value at the
memory location of the argument variable
void foo3 (int *x) //pointer
...final method uses a »
pointer.

}

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 4 — Class & Pointer Basics 4.19 Lecture 4 — Class & Pointer Basics 4.20

Calll By Refference vs By Value

e Call-by-reference in C++ e Call-by-value

The function call: e The function call:

Memory
f (age); - f (age);
Name | Location | Contents N
|
age 1001 34
initial | 1002 A
i hours 1003 23.5 .

address is value is
passed 1004 passed

— |

void f(int& ref_ par); void f(int var_par);

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Call-by-reference equivalent in ©

o C++ call-by-reference e How C does this?

The function call: The function call:
f (age); f (&age) ;

The function definition: The function definition:

void f(int &ref par){ void f(int *ref par){

ref par = .. *ref par = ..

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 4 — Class & Pointer Basics

Arguments to malin()

e Just as other functions can take arguments, so can your
main function.

e Generally you pass information into the main via
command line arguments, that follow the programs name
when you are executing it.

e There are two special built in arguments : argv and argc,
that are used to receive information from the command

Lecture 4 — Class & Pointer Basics 4.22

Example of command line parameter

int main (int argc, char *argv[])

{
check on the if (argc!=2) {
number of “ . e
arguments [cout << “you forgot to enter info”;

}

statement that
ouputs the info to cout << “Hello “ << argv[l];

the screen. —

line.
e argc — holds the number of arguments entered example of use if
.] we had compiled CsrmyProgram Jim
e argv —is an array of pointers to these arguments the code as Hello Jim
myProgram.
Con

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures
Lecture 4 — Class & Pointer Basics 4.23 Lecture 4 — Class & Pointer Basics 4.24

Command line argument ane pointers

e This is what happens in when command line is used:

int main (int argc, char *argv[])

argv[0] argv[l]l argv[2]

ol e Lot 1t]

e o |

‘m’ 5§ 5
o’ ‘m’ 40’
10’ 10’

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

What to do before the next lecture?

e Complete Exercise C (non-assessed) — See separate
sheet

e Either read Lesson 8 & Lesson 15 of the following C++
Tutorial on the web:

http://www.functionx.com/cppbch/Lesson08.htm
http://www.functionx.com/cppbcb/Lesson15.htm

Alternatively, read Chapter 6 & 12.1 of Savitch

PYKC 8 Feb 2006 EE2/ISE1 Algorithms & Data Structures

