
5.1Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• In this lecture we study the use of pointers to
create dynamic data structures.

• Dynamic data structures grow and shrink
during program execution, so you only use up
as much memory as you need.

• The simplest and most common such data
structure is a linked list. We’ll see how linked
lists are implemented and used.

• We’ll also look at the idea of abstract data
types, data structures whose implementation
details are hidden.

5.2Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• We have seen how pointers are used to pass parameters in
functions. However, the most important reason for having
pointers is their use in dynamic variables.

• Dynamic variables are created and destroyed while the program is
running.

• Static variables (also called automatic variables) are created during
compile time according to the declaration part of the program.

int *p;

// create a new dynamic integer variable p
// leave p to point to the variable

p = new int;

*p = 25;

p?

p

p

5.3Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Here is a dynamic array:
int* myArray = new int[arraySize];

• We can use the new operator to dynamically allocate an object of
any type, i.e.,

char* myInit = new char;

Point* ptr = new Point;

*
myInit

*
ptr

Object of type Point

x

y

Object of type char

5.4Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• A linked list is also an example of an abstract data type
(ADT). Abstract data types are an important part of
modular programming.

• The idea is that the underlying implementation of the
data structure is invisible to the procedures that use
it. All they see are a number of predefined functions for
manipulating it.

5.5Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

T

A

C

• Here’s a common example of a dynamic
data structure: a linked list. This is a list
of characters, spelling the word “CAT”.

• Assuming it’s not empty, a linked list is a
pointer to a block of memory, comprising
two items: the first element of the list,
and a pointer to the rest of the list.

• In other words, a linked list is an element
followed by a linked list. So linked lists are
recursively defined structures, in other
words they are defined in terms of
themselves.

• Finally, there’s a special linked list: the
empty list. This is usually represented by
a special pointer, the null pointer. The
end of the list is indicated by the null
pointer.

5.6Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Linked lists are absolutely everywhere in almost all large
application programs.

• If things are created and destroyed during a program’s execution,
there is usually a dynamic data structure involved — a linked list
or something very similar.

• Some obvious examples include,

• The set of open windows on your computer’s desktop.

• The set of files inside a folder.

• The text being typed into a window, which would typically be
stored as a list of blocks of characters.

• But there are many more hidden examples — temporary internal
structures created during a program’s execution.

5.7Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• At run-time, every program maintains an
area of memory known as the heap.
Dynamic data structures, such as linked
lists, inhabit the heap.

• The heap comprises an area of allocated
memory and an area of free memory.

• To grow a data structure — to add an
element to a list, for example — the
program grabs a piece of free memory,
and allocates it to the new element.

• When a data structure shrinks — when an
element is deleted from a list, for example
— the memory allocated to that element
becomes free again.

• In this way, the memory used up at any
time while a program is running is exactly
the amount the program needs, and no
more.

C

A

T

Free
Memory

Allocated
Memory

5.8Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• This depicts a linked list holding a sequence of numbers:
87, 42, 53, 4.

87

42

53

4 /

/ used to signify there are
no more elements in list• Each node includes:

A container for individual data structure
A link to next node in the chain

5.9Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Structure of a node in a linked list implemented as class in
C++
– data member (or members) used to hold data contents of node
– a pointer to next member in list, i.e. data member contains

variable of type Node*

• Example:
class Node {

public:
int data;
Node* next;

};
data next

5.10Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Let’s see how to create a linked list
with ONE integer. The steps are:
1. Declare the data type for a node
2. Declare a pointer to the head of

the linked list
3. Create the first node as a

dynamic variable using the new
operator

4. Fill in the data for the node
5. Make the next pointer pointing

to null, denoting the end of the
list

20 NULL
hdList

5.11Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Better to use typedef to make the
data type more abstract and hence
easier to change in the future.

• In this case, the integer data element is
defined a type named Item.

• We also define a type named NodePtr
as pointer to a Node.

20 NULL
hdList

5.12Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Linked lists, as well as being an example of a dynamic data
structure, are also an example of an abstract data type.

• An abstract data type (ADT) is one whose underlying
implementation is invisible to the procedures that use it.
Instead, they manipulate the data structure via a number
of predefined functions and routines, known as access
routines.

• Access routines come in two main varieties: those for
constructing data structures, and those for accessing their
parts.

• Let us first consider the access routine that adds an item to
the list.

5.13Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

12 45 93
NULLhdList

??
??newNode

12 45 93
NULLhdList

37
newNode

12 45 93
NULL

hdList

37
newNode

5.14Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

•addToList takes two parameters: the number to add, and a
pointer pointing to the head of the list.

• On exit, hdList will be
pointing to a new node.
Therefore it must be
passed to the function by
reference, hence the ‘&’ in
front of hdList.

• Is the new item added to the beginning (i.e. head) or the end (i.e.
tail) of the linked list?

5.15Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• The function buildList will
create a linked list of szList
nodes and return a pointer
hdList that points to the
head of the list.

• The items are generated
randomly in the routine
getItem().

•firstTime is used to detect
when getItem() is first
called and randomize() is
invoked for the random
number generator.

• If DEBUG is true, the random numbers are displayed on the
console as they are generated.

5.16Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

•getFromList()
extracts one item from
the head of the list and
than return the its value.
In addition, it also return
a new pointer pointing to
rest of the list NOT
include the returned
item.

•printAll() displays on the console ALL the items stored in the
entire linked list. It terminates when the next pointer is pointing
to NULL (i.e. empty).

• Why is it better NOT to combine these two routines into one?

• In what order is the list printed?

5.17Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Here is the very clear and clean main
program.

• However, this program has a memory
leak, i.e. it create dynamic memory to
store 4 items, and these are never
returned even after the items are
taken from the list.

• To fix this problem, getFromList() is modified to delete the
node immediate after it is extracted from the list.

5.18Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• To ensure that space on the heap is not wasted, redundant
structures should be taken apart, and the space they occupy made
available again.

• In C++, the delete operator is used to return unwanted memory
back to the heap.

• As an alternative to the previous slide here’s a function that
destroys the list that we have created.

5.19Lecture 5 – Dynamic Data & Linked Lists

PYKC 15 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Complete Exercise C (non-assessed) – See separate
sheet

• Read first part of Chapter 15.1 of Savitch

