Lecture 6 — Ordered Lists 6.1 Lecture 6 — Ordered Lists 6.2
@ i
rdered Lists Ordered Lists Defined
e This lecture presents ordered lists. An ordered . . , . _ _
\:, list is one which is maintained in some « A list is numerically ordered if, for every item X in the list, every
g . item after X in the list is greater than X or equal to X.
= predefined order, such as alphabetical or So the following list is ordered (i ding ord
: . wing list is ordered (in nding order).
. numerical order. o the following list is ordered (in asce g order)
ﬁ = We'll study a linked list implementation. hdList | o—— NULL
= We need routines that can, 2o | 45 e | 939
- e insert a new element, maintaining the order,
L~ and But the following list is not.
< - delete an element from the list.
 We' i i hdList | ®—— NULL
We I als_o consider /_ookup, a routine to extra ool | 2o] o ol
@ information from the list.
PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures
Lecture 6 — Ordered Lists 6.3 Lecture 6 — Ordered Lists 6.4

Insertion into an Orclered List |

e Suppose we want to insert 57 into the list, maintaining its

ascending order.

* We search along the list until we find the first item which is greater

than 57.
* This is the 3 entry on the list, i.e. the entry for 93.

38

hdList | @—— NULL
12 .-r 45 o-r 93 o-r

* We want to insert 57 before this item.

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Insertion into an @W@@W@@M st Il

e Step 1: we create a new newNode e ol I
node for 57

e Step 2: Identify where to insert (before 93)

hdList | ®—— ‘ NULL
I 12 .-r 45 ..__|_' 93 o-r

e Step 3: Make 57 point to 93

newNode @

57 q\

hdList | ®—— NULL
® 12 o-r 45 o-f 93 o-r

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 6 — Ordered Lists

Insertion into an Orclered List |

e Step 4: Break the link between 45 and 93

57 q\

hdList | @—— NULL
12 o-r 45 ..f 93 o-r

newNode [

e Step 5: Re-link it to 57

newNode [

57

~9

hdList | e—— e I

12 (@1 45 @ 93

NULL
o

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

6.5

Lecture 6 — Ordered Lists 6.6

Insertion imto an Ordered List I

e This looks straightforward. But to write a function that does this
needs a little more thought.

 For a start, once we've found the first item greater than 57 (i.e. 93),
we've already moved past 45, whose entry we want to modify.

» So we maintain two pointers in the search. The search pointer itself,
plus a previous pointer, which is one item behind.

previous search
pointer poiter

hdList o— NULL
I 12 .-r 45 o-r 93 o-r

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 6 — Ordered Lists

Insertion into an Orclered List IV

< Another problem is that we have to treat it as a special
case if we need to insert the new item as the first

element in the list.

e This is the only case in which the pointer to the whole
list is modified.

e The old list will be passed to the insertion routine as a
call-by-reference parameter. This special case is the only
time this parameter is actually modified by the
procedure.

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

6.7

Lecture 6 — Ordered Lists 6.8

Ordered Lists as an ADT

« We'll use the same type declaration as before.

e And we’'ll write two access routines insertItem() and
deleteItem().

typedef int Item;

class Node {
public:
Item data;
Node?* next;

}i
typedef Node* NodePtr;
NodePtr hdList = NULL;

void insertItem (Item data,
NodePtr &hdList) {
bool found = FALSE;
NodePtr searchPtr, lastPtr, newPtr;

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 6 — Ordered Lists 6.9 Lecture 6 — Ordered Lists 6.10
A new getltem() function Insertion
e In the previous lecture, the integers in the list was generated .
L. . o . NodePtr &hdList) {
randomly. This is no help to us to in building an ordered list bool found = FALSE;:
because we have no control over what numbers are generated. NodePtr searchPtr, lastPtr, newPtr;
e We will use a new getitem() function which read numbers from // create node .
. newPtr = new Node;
the keyboard. insertitem() and deleteItem(). We first create the new node. | { newPtr->data = data;
newPtr->next = NULL;
// empty list is special case
Item getItem () { : if (hdList==NULL) ({
int number; Must handle empty list as a hdList = newPtr;
i return;
char str[80]; special case.)
cout << "Enter an integer: "; // insert at head is speical too
cin >> str: else if (hdList->data >= data) {
' newPtr->next = hdList;
number = atoi(str); Insert at the head of the list is hdList = newPtr;
return Item(number); also a special case. }
}
PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures
Lecture 6 — Ordered Lists 6.11 Lecture 6 — Ordered Lists 6.12

Insertion - mormal ase

// mormal insertion
else {

Initialize things ‘{

Search to find
to insert item

where

Re-link item
correct place

into the

found = FALSE;
searchPtr = hdList;
lastPtr = hdList;
while ((searchPtr != NULL) && (!
if (searchPtr->data >= data)
found = TRUE;
else {
lastPtr = searchPtr;
searchPtr =
}
}

newPtr->next =

searchPtr;
‘E lastPtr->next =

newPtr;

found))

searchPtr->next;

{

PYKC 16 Feb 2006

EE2/ISE1 Algorithms & Data Structures

Deletion from an Ordered List |

» Deletion is similar to insertion.

e Suppose we want to delete 45 from the original list

e First search along the list until we find 45. (If 45 isn't there, we've

finished.)

hdList

PYKC 16 Feb 2006

search

pointer

\

12

r 45 o-r 93 o-r .

EE2/ISE1 Algorithms & Data Structures

Lecture 6 — Ordered Lists 6.13

Deletion firom an Orclered List |

e Then 45 is detached from the list by linking 12 to 93 directly.

* We mustn't forget to return the space used up by 45 to the free area
of the heap.

hdList | @——

12

e As with insertion, we need to maintain both a search pointer and a
previous pointer.

< As with insertion, we need to treat deletion of the first element of the
list as a special case.

Lecture 6 — Ordered Lists 6.14

Deletion from an Orcered List Il

¢ As with insertion, we need to maintain both a
search pointer and a follow pointer.

¢ As with insertion, we need to treat deletion of
the first element of the list as a special case.

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures
Lecture 6 — Ordered Lists = 6.15 Lecture 6 — Ordered Lists 6.16
Deletion Lookup and its Uses
void deleteItem (Item data, NodePtr &hdList){ [u][;) H
bool found = FALSE;
NodePtr searchPtr, lastPtr, oldPtr; . B . . .
// empty list is special case « Lists are useful for /looking things up. Ordered lists are a little more
L I A e e . .
Errowlpty 'lit, 'SISPeC'a'- T e, o efficient for this than unordered ones. (But not much.)
0 nothing! N
else if (hdList->data == data) { = Obvious examples of programs that need to look things up include:
Delete from head of RaLise - naListoomext; the address book in your personal organiser
list is also special. delete oldPtr; In your p ganiser,
e ¢ - the search facility on a CD ROM,
found = FALSE; .
’Initialize things. \ { searchptr = hdList; e But there are lots of less obvious uses too. A compiler has to
e (I e o e e T () F e maintain a /ook-up table for every variable name, every procedure

found = TRUE;
lastPtr->next = searchPtr->next;
delete searchPtr;

{ if (searchPtr->data == data) {

’ Search for item. ‘]

else {
lastPtr = searchPtr;
searchPtr = searchPtr->next;
’ Found here, delete! r) }
}
}
PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

name, etc, that you introduce in a program.

e If you understand insertion and deletion, lookup is just really a
search in the list and return the required information.

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 6 — Ordered Lists 6.17

What to do before the next lecture?

* Complete Exercise D (non-assessed) — See next slide
e Read all of Chapter 15 of Savitch

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 6 — Ordered Lists 6.18

Ordered Linked list

= = You should try the ordered list program given to you
in the lecture and make sure that you understand
), ~ < .
how it works.

=
= Write the function 1ookup (), Which has as input the
number to search in an ordered list. It should then
? return the pointer to that particular item.
]
=
=

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

