
6.1Lecture 6 – Ordered Lists

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• This lecture presents ordered lists. An ordered 
list is one which is maintained in some 
predefined order, such as alphabetical or 
numerical order.

• We’ll study a linked list implementation.

• We need routines that can,

• insert a new element, maintaining the order, 
and

• delete an element from the list.

• We’ll also consider lookup, a routine to extra 
information from the list.

6.2Lecture 6 – Ordered Lists

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• A list is numerically ordered if, for every item X in the list, every 
item after X in the list is greater than X or equal to X.

• So the following list is ordered (in ascending order).

• But the following list is not.

12 45 93
NULLhdList

45 12 93
NULLhdList

6.3Lecture 6 – Ordered Lists

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Suppose we want to insert 57 into the list, maintaining its 
ascending order.

• We search along the list until we find the first item which is greater 
than 57.

• This is the 3rd entry on the list, i.e. the entry for 93.

• We want to insert 57 before this item.

12 45 93
NULLhdList

57

6.4Lecture 6 – Ordered Lists

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Step 2: Identify where to insert (before 93)

• Step 3: Make 57 point to 93

• Step 1: we create a new 
node for 57

12 45 93
NULLhdList

57
newNode

57
newNode

12 45 93
NULLhdList



6.5Lecture 6 – Ordered Lists

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Step 4: Break the link between 45 and 93

• Step 5: Re-link it to 57

57
newNode

12 45 93
NULLhdList

45 93
NULLhdList

12

57
newNode

6.6Lecture 6 – Ordered Lists

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• This looks straightforward. But to write a function that does this 
needs a little more thought.

• For a start, once we’ve found the first item greater than 57 (i.e. 93), 
we’ve already moved past 45, whose entry we want to modify.

• So we maintain two pointers in the search. The search pointer itself, 
plus a previous pointer, which is one item behind.

12 45 93
NULLhdList

search 
pointer

previous 
pointer

6.7Lecture 6 – Ordered Lists

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Another problem is that we have to treat it as a special 
case if we need to insert the new item as the first
element in the list.

• This is the only case in which the pointer to the whole 
list is modified.

• The old list will be passed to the insertion routine as a 
call-by-reference parameter. This special case is the only 
time this parameter is actually modified by the 
procedure.

6.8Lecture 6 – Ordered Lists

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• We’ll use the same type declaration as before.

• And we’ll write two access routines insertItem() and 
deleteItem().



6.9Lecture 6 – Ordered Lists

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• In the previous lecture, the integers in the list was generated 
randomly.  This is no help to us to in building an ordered list 
because we have no control over what numbers are generated.

• We will use a new getItem() function which read numbers from 
the keyboard. insertItem() and deleteItem().

6.10Lecture 6 – Ordered Lists

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

We first create the new node.

Must handle empty list as a 
special case.

Insert at the head of the list is 
also a special case.

6.11Lecture 6 – Ordered Lists

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Initialize things

Search to find where 
to insert item

Re-link item into the 
correct place

6.12Lecture 6 – Ordered Lists

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Deletion is similar to insertion.

• Suppose we want to delete 45 from the original list

• First search along the list until we find 45. (If 45 isn’t there, we’ve 
finished.)

12 45 93
NULLhdList

search 
pointer



6.13Lecture 6 – Ordered Lists

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Then 45 is detached from the list by linking 12 to 93 directly.

• We mustn’t forget to return the space used up by 45 to the free area 
of the heap.

12 45 93
NULLhdList

• As with insertion, we need to maintain both a search pointer and a 
previous pointer.

• As with insertion, we need to treat deletion of the first element of the 
list as a special case.

6.14Lecture 6 – Ordered Lists

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• As with insertion, we need to maintain both a 
search pointer and a follow pointer.

• As with insertion, we need to treat deletion of 
the first element of the list as a special case.

6.15Lecture 6 – Ordered Lists

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

Empty list is special: 
do nothing!

Delete from head of 
list is also special.

Initialize things.

Search for item.

Found here, delete!

6.16Lecture 6 – Ordered Lists

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Lists are useful for looking things up. Ordered lists are a little more 
efficient for this than unordered ones. (But not much.)

• Obvious examples of programs that need to look things up include:

• the address book in your personal organiser,

• the search facility on a CD ROM,

• But there are lots of less obvious uses too. A compiler has to 
maintain a look-up table for every variable name, every procedure 
name, etc, that you introduce in a program.

• If you understand insertion and deletion, lookup is just really a 
search in the list and return the required information.



6.17Lecture 6 – Ordered Lists

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Complete Exercise D (non-assessed) – See next slide

• Read all of Chapter 15 of Savitch

6.18Lecture 6 – Ordered Lists

PYKC 16 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• You should try the ordered list program given to you 
in the lecture and make sure that you understand 
how it works.

• Write the function lookup(), which has as input the 
number to search in an ordered list. It should then 
return the pointer to that particular item.


