
7.1Lecture 7 – Recursion

PYKC 28 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• In this lecture we study recursion.

• Recursion is a programming technique in which 
procedures and functions call themselves.

• We’ll also be looking at the stack — a structure 
maintained by each program at run time. This 
will help us to understand recursive procedure 
call.

7.2Lecture 7 – Recursion

PYKC 28 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Recursion can be used to replace loops.

• Recursively defined data structures, like lists, are very 
well-suited to processing by recursive procedures and 
functions

• A recursive procedure is mathematically more elegant 
than one using loops.

• Sometimes procedures that would be tricky to write 
using a loop are straightforward using recursion.

7.3Lecture 7 – Recursion

PYKC 28 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Here’s a function that computes the factorial 
of a number N without using a loop.

• It checks whether N is smaller than 3. If so, 
the function just returns N.

• Otherwise, it computes the factorial of N – 1 
and multiplies it by N.

7.4Lecture 7 – Recursion

PYKC 28 Feb 2006 EE2/ISE1 Algorithms & Data Structures

To evaluate Factorial(5)
evaluate 5 * Factorial(4)

To evaluate Factorial(4)
evaluate 4 * Factorial(3)

To evaluate Factorial(3)
evaluate 3 * Factorial(2)

Factorial(2) is 2
Return 2

Evaluate 3 * 2
Return 6

Evaluate 4 * 6
Return 24

Evaluate 5 * 24
Return 120

• This box shows the pattern of function calls 
used to evaluate Factorial(5) recursively.



7.5Lecture 7 – Recursion

PYKC 28 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• The function below prints out the number in a list of numbers. Unlike the 
version of printAll in Lecture 5, slide 16, it doesn’t use a loop.

• This is how it works.

• It prints out the first number in the list.

• Then it calls itself to print out the rest of the list.

• Each time it calls itself, the list is a bit shorter.

• Eventually we reach an empty list, and the whole process terminates.

7.6Lecture 7 – Recursion

PYKC 28 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• To understand how recursion works at run time, we need to 
understand what happens when a function is called.

• Whenever a function is called, a block of memory is allocated to it in 
a run-time structure called the stack.

• This block of memory will contain

• the function’s local variables,

• local copies of the function’s call-by-value parameters,

• pointers to its call-by-reference parameters, and

• a return address, in other words where in the program the 
function was called from. When the function finishes, the 
program will continue to execute from that point.

7.7Lecture 7 – Recursion

PYKC 28 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Let’s look at an example. Here’s the main part of the 
program on slide 5.17.

• The initial stack is empty. (Or might contain the program’s 
global variables, depending on implementation.)

• What happens when the program calls buildList?

Stack before call to buildList

7.8Lecture 7 – Recursion

PYKC 28 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• The buildList function has one local variable, and one call-by-value 
parameter one call-by-reference parameter.

• The local variable gets space on the stack, along with the value
parameter and a pointer to the call-by-reference parameter.

i

Return Address

Stack after 
call to 

buildList
szList

&hdList&hdList



7.9Lecture 7 – Recursion

PYKC 28 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Now let’s look at the recursive calls to printAll.

• The printAll function has no local variables, but one 
call-by-value parameter.

Return Address

Stack after 
call to 

printALL

hdList

7.10Lecture 7 – Recursion

PYKC 28 Feb 2006 EE2/ISE1 Algorithms & Data Structures

hdList

Return Address

Stack after 1st Call

The Heap

Stack before 1st Call

• This is how the stack grows after the first call to 
printAll.

hdList

7.11Lecture 7 – Recursion

PYKC 28 Feb 2006 EE2/ISE1 Algorithms & Data Structures

hdList

Return Address

hdList

Return Address

hdList

Return Address

Stack after 1st Call

The Heap

Stack after 2nd Call

• This is how the stack grows after 
the second call to printAll.

• Note how successive calls move 
along the list.

hdList

7.12Lecture 7 – Recursion

PYKC 28 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Eventually, printAll is called with the empty list as its argument.

• Then there are no more recursive calls, and control is returned to the 
previous invocation of printAll , which in turn returns control to the one 
before, and so on until we are back in the main program again.

• The stack shrinks in the opposite order to that in which it grew. The last
element to be put on the stack is taken off first. (A stack is a LIFO structure 
— Last In First Out.)

• If there are three elements in the list, this is how the execution looks.

1st call to printAll
Print 1st element of the list
2nd call to printAll

Print 2nd element of the list
3rd call to printAll

Print 3rd element of the list
Exit 3rd call to printAll

Exit 2nd call to printAll
Exit 1st call to printAll



7.13Lecture 7 – Recursion

PYKC 28 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Recall that when we consider the program of ordered list, the number 
printed starts from head of the list to the tail of the list.

• It is possible to print the list from tail first with recursion.

• It is identical to the printAll program, except that the two lines inside 
the if statement are the other way around.

• Printing the list out backwards using a loop is much harder.

7.14Lecture 7 – Recursion

PYKC 28 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• The trick with recursion is to ensure that each recursive 
call gets closer to a base case. In most of the examples 
we’ve looked at, the base case is the empty list, and the 
list gets shorter with each successive call.

• Recursion can always be used instead of a loop. (This is 
a mathematical fact.) In declarative programming 
languages, like Prolog, there are no loops. There is only 
recursion.

• Recursion is elegant and sometimes very handy, but it is 
marginally less efficient than a loop, because of the 
overhead associated with maintaining the stack.


