
8.1Lecture 8 – More List Processing

PYKC 29 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• In this lecture we look at various
operations that can be carried out on lists,
and how they’re implemented.

• In particular, we’ll look at,

• appending two lists

• reversing lists, and

• accumulating parameters.

8.2Lecture 8 – More List Processing

PYKC 29 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• This function appends
two lists together.

• First it builds up a
reversed copy of
list1.

• Then it runs along that
copy adding each
element to list2.

• Note that it uses two
access functions, and
doesn’t manipulate
pointers directly.

8.3Lecture 8 – More List Processing

PYKC 29 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• The function below uses recursion instead of a loop
to append two lists together.

• It also uses the existing access procedures, and
doesn’t manipulate pointers directly.

8.4Lecture 8 – More List Processing

PYKC 29 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Here’s another function that appends two lists of names together using
pointers instead of access routines.

• It works by

• Finding the end of the first list, then

• Attaching the second list onto it.

8.5Lecture 8 – More List Processing

PYKC 29 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• The three append functions differ not only in their style of
implementation, but also in the way they use the heap.

• Both appendList1() creates a new copy of list1. So the appended list
comprises a new copy of list1 followed by the old copy of list2.

• In addition, appendList1() creates a duplicate temporary list tempList.
which is merged with list2. At the end of the function list1 is redundant and
should be destroyed (i.e. returned to the heap) in order to save memory.

list1 list2

appendList1(list1,list2)

8.6Lecture 8 – More List Processing

PYKC 29 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• appendList2() function uses recursion and pushes onto the stack the
entire point links of list1. These are then linked into list2 one by one!

• The appendList3() function, on the other hand, doesn’t create anything
new data . But Names1 is swallowed up by the appended list.

• We can use any of these versions, so long as we’re aware how they behave.

list1 list2

appendList3(list1,list2)

8.7Lecture 8 – More List Processing

PYKC 29 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Here’s a simple procedure that reverses a list,
using a loop.

8.8Lecture 8 – More List Processing

PYKC 29 Feb 2006 EE2/ISE1 Algorithms & Data Structures

• Here is how reversing a list can be done with recursion using something
called an accumulating parameter. The second parameter tempList,
which is set to NULL by the calling routine, accumulates the final result.

• When the base case is reached, that result is returned, and it then floats
back up through all the procedure exits to become the final result.

8.9Lecture 8 – More List Processing

PYKC 29 Feb 2006 EE2/ISE1 Algorithms & Data Structures

list reverseList2

1st Call

2nd Call

• Here’s how tempList accumulates the result of the reverseList2()
function.

• Each list is represented as a vertical pile of elements, to emphasise how the
old list is gradually transfered into the accumualting parameter.

• The next slide shows how the computation winds up.

list

tempList

tempList reverseList2

8.10Lecture 8 – More List Processing

PYKC 29 Feb 2006 EE2/ISE1 Algorithms & Data Structures

3rd Call

Final Call

Exit from Final Call

list tempList reverseList2

list tempList reverseList2

list tempList reverseList2

