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• This lecture is about trees, which are another 
common data structure.

• We’ll be looking at binary trees, how they’re 
represented and built.

• We’ll also look at ordered binary trees, which 
are a good way to store items in some order, 
such as alphabetical order.

• Trees are also important in parsing (breaking 
a sentence into its parts), which we’ll study 
later.
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• This type declaration is for a binary 
tree of strings. It’s quite similar to 
the declaration for a list.

• The tree comprises a number of 
nodes. Each node has two children, 
or sub-trees, which are themselves 
trees. A tree can be empty.

• Here’s an example.
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• This is the pointer 
structure representing 
the tree on the previous 
slide.

• A tree is a dynamic data 
structure, like a list. It 
grows and shrinks as 
required, and resides in 
the heap.
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• Here are some access procedures for trees.

• The empty tree is represented by the NULL pointer.

• The access procedures that extract the parts of a tree 
are trivial.
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• This particular binary tree has an 
interesting property. It is an ordered
binary tree.

• For any node N, every node in the left 
sub-tree of N is alphabetically before 
N, and every node in the right sub-
tree is alphabetically after (or equal 
to) N.

• Ordered binary trees are very useful if 
we need to maintain an ordered 
sequence of items.

• It’s easy to insert a new element.

• It’s easy to traverse the tree in 
order.

• Ordered trees are much faster for 
lookup than lists.

• There are many ordered 
binary trees for any given set 
of names. Here’s a variant of 
the tree on the earlier slide.
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• Suppose we want to insert 
“Katie” into this tree.

• “Katie” is after “John”, so it 
gets inserted into the right 
sub-tree of the root node.

• “Katie” is before “Mary” so 
it gets inserted into the left 
sub-tree of this node.

• “Katie” is before “Lucy” so 
it gets inserted into the left 
sub-tree of this node.
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• The left sub-tree of 
this node is empty, so 
we’ve reached the 
base case.

• A new sub-tree is 
created comprising 
just “Katie”, and this 
becomes the new left 
sub-tree of “Lucy”. Katie
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• Here’s a recursive procedure for inserting a new name into the tree, while 
preserving its ordered property.

• The base case of the 
recursion is reached 
when we get to an 
empty sub-tree.

• Then a new node is 
created.

• In the recursive case, 
the new name is 
inserted into the left 
sub-tree if it smaller 
than the name at the 
node, and into the right 
sub-tree otherwise.
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• To print out all the names in the tree in alphabetical order, 
we just have to visit the nodes in the right order.

• Here’s a recursive procedure that does it. We visit the nodes 
in the sequence: left sub-tree, node, right sub-tree. (This is 
called in-order traversal.)
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• By swapping these two lines, the same procedure prints out 
all the names in reverse.

• You can also do pre-order traversal (node, left sub-tree, 
right sub-tree) and post-order traversal (left, right, node). 
But these don’t do anything useful here.
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• Suppose we want to delete “Bill” 
from this ordered binary tree.

• First we have to find “Bill”. So 
we search down the tree in the 
usual fashion until we’ve got a 
sub-tree that has “Bill” at the 
root.

• Our job now is to delete the root 
from this sub-tree.

Fred
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Albert
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• To delete the root of a sub-tree, we

• replace it by the immediate 
(alphabetic) successor of the 
element it contains, and

• delete the node where that 
successor came from.

• In general, the immediate successor of 
the element in the root node is the 
leftmost node in its right sub-tree. 
(Think about it.)

• In this case, the immediate successor of 
“Bill” is “Fred”.

• So we replace “Bill” by “Fred”.

• Then delete the node where “Fred” 
came from.

Fred
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• Here’s the final tree.

• Note that we have preserved 
its orderedness.
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• Now we’ll look at the required C++ code.

• The code is quite tricky, and requires several mutually recursive procedures.

• First we have to find the node to be deleted.

• We check that the tree is not empty. If it is, the node to be deleted doesn’t exist, 
so we leave the tree as it is.

• We’ve found the 
node to be deleted 
if it is the root of 
the tree. We then 
call another 
procedure to 
remove the root.

• Otherwise, we 
carry on looking 
down the 
appropriate branch.
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• Here’s part of the code for the removing the root.

• If the root node has no right sub-tree, then all we have to do is replace the whole 
tree by the root’s left sub-tree.

• Otherwise, we 
replace the root with 
its immediate 
successor in the tree, 
and remove the node 
where that successor 
was.

• The successor of a 
node is the leftmost 
node of its right sub-
tree. The variable 
Leftmost takes on this 
value.
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• Finally we have a procedure that finds and deletes the leftmost descendant 
of a given node.

• First it has to find this node.

• If the node has no left sub-tree then it has no left descendants, and we’ve 
found it.

• So we call 
DeleteRoot again 
to remove the 
node, and we 
return the name it 
contained in the 
variable Leftmost.

• Otherwise, we 
continue moving 
down the tree, 
keeping to the 
left.

9.30Lecture 9 – Binary Trees

PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures

• The procedures for deleting a node from a binary ordered tree are 
mutually recursive.

• This means that procedure A calls procedure B, which calls procedure A 
again.

• In C++, we can’t use a function before we’ve declared it, so when we 
write mutually recursive procedures, we have to make a function 
prototype.

• So, before the function DeleteRoot(), we put in a function prototype 
for the function DeleteLeftmost(). The actual code for 
DeleteLeftmost() comes later, after the DeleteRoot() procedure.
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• Insertion and lookup in an ordered binary tree are, in 
general, more efficient than insertion and lookup in an 
ordered list.

• Intuitively, we can see why.

• To find an element in an ordered binary tree, the worst 
we ever have to do is search down to the lowest layer 
of the tree. If the tree has 4 layers, it can store 
1+2+4+8 = 15 elements, but it only takes a maximum 
of 5 iterations of a loop to find any element.

• Contrast this with an ordered list of 15 elements. There 
it could take as many as 15 iterations around a loop to 
find an element.
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• In a balanced ordered binary tree, each iteration of the lookup loop 
halves the number of elements left to search through.

• So on average, we can expect lookup to take roughly log(N) steps.

• But the tree has to be reasonably well balanced to get good results. A 
completely balanced tree is one in which every node in every layer above 
the bottom layer has two children.

• When a tree is very unbalanced it is just like a list. So in the worst case
lookup can take as long as lookup in a list.

• We can improve our insertion procedure by rebalancing the tree after 
each insertion. (We won’t give details here.)
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A Balanced Tree

An Unbalanced Tree


