Lecture 9 — Binary Trees 9.1 Lecture 9 — Binary Trees 9.2
inary Trees Binary Trees
e This type declaration is for a binary
L - This lecture is about trees, which are another free of strings. It's quite similar to
the declaration for a list.
@ common data structure.)
,] . , e The tree comprises a number of #include <iostream.h>
@ » We'll be looking at binary trees, how they're nodes. Each node has two children, #include <string.h>
represented and built. or sub-trees, which are themselves conedet strind It
. . trees. A tree can be empty. ypeaet string ttems
ﬁ « We'll also look at ordered binary trees, which Py
. . e Here's an example class Treetlode §
'y are a good way to store items in some order, " Fred public:
such as alphabetical order. T aft
EF Treeblode* right;
@ e Trees are also important in parsing (breaking . 1
a sentence into its parts), which we’ll study Bill Lucy
typedef TresNode* TresPtr:
later. / A
Albert John Mary
PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures
Lecture 9 — Binary Trees 9.3 Lecture 9 — Binary Trees 9.4

Trees and Pointers

e This is the pointer
structure representing
the tree on the previous
slide.

o T

e A tree is a dynamic data
structure, like a list. It
grows and shrinks as
required, and resides in
the heap.

Albert n“

PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures

Access Procedures for Trees |

= Here are some access procedures for trees.
* The empty tree is represented by the NULL pointer.

e The access procedures that extract the parts of a tree
are trivial.

s Access Routines

string nodelame (TreePtr tree) {
return tree-rname;

b

TreePtr rightChild (TresPtr tree) {
return tree-rright:
i

TresPtr leftChild (TreePtr trees)
return tree-rleft;
¥

PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 9 — Binary Trees 9.5 Lecture 9 — Binary Trees 9.6
Ordlered Trees Insertion Example |
e This particular binary tree has an
interesting property. It is an ordered John
binary tree.
= For any node N, every node in the left /\ e Suppose we want to insert
sub-tree of N is alphabetically before . “Katie” into this tree. John
N, and every node in the right sub- Bill Mary “Katie” is after “John™. so |
tree is alphabetically after (or equal ° Katle_ 1S ater_ John”, S_O it
to) N. gets inserted into the right
. . sub-tree of the root node. Bill Mary
e Ordered binary trees are very useful if Alb
we need to maintain an ordered ert Fred Lucy - “Katie” is before “Mary” so
sequence of items. it gets inserted into the left
o It i sub-tree of this node.
It's easy to insert a new element. - There are many ordered o Albert Fred
= It's easy to traverse the tree in binary trees for any given set - “Katie” is before “Lucy” so
order. of names. Here's a variant of it gets inserted into the left
e Ordered trees are much faster for the tree on the earlier slide. sub-tree of this node.
lookup than lists.
PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures
Lecture 9 — Binary Trees 9.7 Lecture 9 — Binary Trees 9.8

Insertion Example |

*The left sub-tree of
this node is empty, so
we've reached the
base case.

A new sub-tree s

created comprising
just “Katie”, and this
becomes the new left
sub-tree of “Lucy”.

PYKC 15 March 2006

John
Bill Mary
/N
Albert Fred Lucy
/
Katie

EE2/1SE1 Algorithms & Data Structures

e The base case of the

PYKC 15 March 2006

Inserting a String

e Here's a recursive procedure for inserting a new name into the tree, while
preserving its ordered property.

recursion is reached vold insertWame (string newlName,
TreePtr &Htree) 1{
when we 991: to an —_— | TresPtr newlode:
empty sub-tree. | if (tree == NULL) { -~base case - smpty
newhode = new TreeNode;
Then a new node is newtlode->name = newlame:
created —_ newlode->left = HNULL;

newlode->right = MNULL;

In the recursive case, S LR L

the new name iS\ else 1if (newblame < tree-:name)

inserted into the left | insertHame (newlame, tree->left);
P else

sub-tree if it smaller insertName (newllame, tree->right);

than the name at the "

node, and into the right
sub-tree otherwise.

EE2/ISE1 Algorithms & Data Structures

Lecture 9 — Binary Trees 9.9 Lecture 9 — Binary Trees 9.10
Traversing the Tree | e
i i . . vold printNames (TreePtr treg) {
= To print out all the names in the tree in alphabetical order, if (treel=HULL) {
we just have to visit the nodes in the right order. printiames (1eftChild (t :
cout << nodellame (tree) << endl;
e Here’s a recursive procedure that does it. We visit the nodes printNames (rightChild (tree)):
in the sequence: left sub-tree, node, right sub-tree. (This is } r
called /in-order traversal.)
. . John
wvold printHames (TresPtr tree) { Screen
1f (tres!=HULL)
printHames (leftChild(tres)):;
cout << nodeName (tree) << endl:;
printNames (rightChild(tree)): Bill Mary
¥
¥
Albert
PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures
Lecture 9 — Binary Trees D 9.11 Lecture 9 — Binary Trees Ex U 9.12
|
| 1
vold printNames (TresPtr tres) { void printHames (TreePtr tree) {
if (tree!=MULL) _ g{ if (tres!=NULL) {
printMames (leftChildN tree]), printMames (leftChil ree)’;
cout << nodelame (tree) (< s cout << nodellams (tree) << endls
3 printNames (rightChild(tres)); printHames (rightChild(tree));
¥
b L |}
John John
/\ Screen /\ Screen
Bill Mary Bill Mary
Albert Albert
PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 9 — Binary Trees U 9.13 Lecture 9 — Binary Trees E}X H 9.14
| | l
wvold printNames (TreePtr tree) { wvold printNames [(TreePtr tree) {
if [tree!=HULL) if [tree!=HULL)
printHames (leftChild 1=} printNames (leftChild EEIDE
cout << nodeName (tree)] << endly cout << nodeMName (tree) << endly
printhames (rightChild {tree)): printhames (rightChild (tree)):
i i
L] |} L] |}
John John
/\ Screen /\ Screen
Albert . Albert
Bill Mary Bill Mary
Albert Albert
PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures
Lecture 9 — Binary Trees H 9.15 Lecture 9 — Binary Trees E}X U 9.16
vold printNames (TreePtr tree) { vold printNames (TreePtr tree) {
if (tree!=HLLL) if (tree!=HLLL)
printMames (leftChild Mree)); printHames (leftChildtree));
cout << nodeName (tree) < endly cout << nodelame (tres 1:
printHames (rightChild (tres)): printMames (rightChild (tres)):
} ¥
¥ ¥
John John
/\ Screen /\ Screen
: Albert Bi Albert
ill Mar :
Bill Mary Bill ary Bill
Albert Albert
PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 9 — Binary Trees H 9.17 Lecture 9 — Binary Trees n 9.18
vold printNames (TreePtr tree) { vold printNames (TresPtr tree)
if (tree!=HNULL) 1f [tree!=HNULL)
printMames (leftChild(; printMames (leftChild(;
cout << nodeName (tree)] << endl; cout << nodelame (tree) << endl;
printMames (rightChild (tres)): printMNames (rightChild (tres)):
B B
3 3
John John
/\ Screen /\ Screen
. Albert . Albert
Bill Mary Bill Bill Mary Bill
John John
Albert Albert
PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures
Lecture 9 — Binary Trees U 9.19 Lecture 9 — Binary Trees H 9.20
vold printNames (TreePtr tree) { vold printNames (TreePtr tree) {
if (tree!=HLLL) if (tree!=HLLL)
printMames (leftChild(2] printHames (leftChild(2]];
cout << nodeMame (tree) << endl: —| cout << nodeMame(tree) << endl:
printiames (rightChild (tres)): printMames (rightChild (tres)):
} }
¥ ¥
John John
/\ Screen /\ Screen
) Albert) Albert
Bill Mary Bill Bill Mary Bill
John John
Mary
Albert Albert

PYKC 15 March 2006

EE2/ISE1 Algorithms & Data Structures

PYKC 15 March 2006

EE2/ISE1 Algorithms & Data Structures

Lecture 9 — Binary Trees H 9.21 Lecture 9 — Binary Trees Ex D 9.22
l vold printNames [(TreePtr tree) {
. . if (tree!=NULL) {
"Oldi‘grtﬁf‘gzr}‘ﬁuﬁfa?ﬁr tres) { printMames (1eftChild (£

printHames (leftChild Pbree)) : S (S8 eIt s [op) S G

cout << nodeMame (tree) << endly jshsehiREl LT S bl AN (=) e

printlames (rightChild (tree): ¥

! L
F
John
John Screen
Screen /\
/\ | Aben
Bill Mary At Bill Mary Bill
i John
John Mary
Mary
Albert
Albert

PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures
Lecture 9 — Binary Trees 9.23 Lecture 9 — Binary Trees 9.24

Traversing the Tree |l

* By swapping these two lines, the same procedure prints out
the names in reverse.

*/You can also do pre-order traversal (node, left sub-tree,
right sub-tree) and post-order traversal (left, right, node).
But these don’t do anything useful here.

wvold printWNamesBackwards (TreePtr tree)
1f (tree!=HULL) {

}

printHamesBackwards (rightChild (tree));
\ cout << nodelame(tree) << endl:
printHamesBackwards (leftChild (tree));

PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures

PYKC 15 March 2006

Deletion Example |

e Suppose we want to delete “Bill”
from this ordered binary tree.

e First we have to find “Bill”. So
we search down the tree in the
usual fashion until we've got a

sub-tree that has “Bill” at the\
root.

= Our job now is to delete the root Bill Mary

from this sub-tree.
Bill
/\ Albert Fred Lucy

Albert Fred Katie

EE2/ISE1 Algorithms & Data Structures

Lecture 9 — Binary Trees 9.25 Lecture 9 — Binary Trees 9.26
&
Deletion Example Deletion E N
= To delete the root of a sub-tree, we Bill @ @ H@m X@M@ @
ereplace it by the immediate
(alphabe_tlc) successor of the « Here's the final tree.
element it contains, and John
- delte the node where that Albert Fred « Note that we have preserved
successor came from. its orderedness. /\
= In general, the immediate successor of Fred Fred Mary
the element in the root node is the
leftmost node in its right sub-tree. /
(Think about it.)
Albert Fred Alb
« In this case, the immediate successor of ert Lucy
“Bill” is “Fred”. Fred /
* So we replace “Bill” by “Fred”. Katie
e Then delete the node where “Fred” —"
came from. Albert
PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures
Lecture 9 — Binary Trees 9.27 Lecture 9 — Binary Trees 9.28

* We've found the

Deletion

< Now we'll look at the required C++ code.
e The code is quite tricky, and requires several mutually recursive procedures.

= First we have to find the node to be deleted.

= We check that the tree is not empty. If it is, the node to be deleted doesn't exist,

so we leave the tree as it is.

node to be deleted

if it is the root of wold deleteblame (string name,
TreePtr &Gtree){
the tree. We then T~ (treelAULL) |
call another \\i’f (nodeName (tree)==name) - found
procedure to deleteRoot (tree);
remove the root. else if (name < nodelame (tree))

deleteMNames (name, leftChildi(tree)):
Otherwise, we ﬂ;e

carry on looking — 1 —— deletelName(name, rightChild(tre=)]:;

down the ! ¥

appropriate branch.

m u
PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures

Deletion

Here’s part of the code for the removing the root.

If the root node has no right sub-tree, then all we have to do is replace the whole
tree by the root's left sub-tree.

= Otherwise, we i vold deleteRoot (TreePtr &Stree) |
replace the root with TreePtr tempHode;
its immediate string leftmost;
successor in the tree, < if (tree;é“ight == NULL} {
tempNode = tree;
and remove the node “~—_, free = tree—>left:
where that successor delete tempMode:
was. I
else |
e The Sl_'lccessor of a \ deleteleftmost (tree-»right, leftmost):
node is the leftmost tree->name = leftmost:
node of its right sub- T
tree. The variable b
Leftmost takes on this
value.
m
PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 9 — Binary Trees

Deletion I}

» Finally we have a procedure that finds and deletes the leftmost descendant
of a given node.

e First it has to find this node.
< If the node has no left sub-tree then it has no left descendants, and we've

found it.
* So we call
DeleteRoot again

to remove the
node, and we void deleteleftmost (TreePtr &tree,

return the name it _ string &leftmost) |

contained in the if (tree-:left == HNULL) {
. leftmost = tree-rname;

variable Leftmost.

deleteRoot (tree);

= Otherwise, we ilse
continue moving —— deleteleftmost (tree-rleft, leftmost):;
down the tree, F
keeping to the
left.

PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 9 — Binary Trees 9.30

Mutual Recursion

e The procedures for deleting a node from a binary ordered tree are
mutually recursive.

e This means that procedure A calls procedure B, which calls procedure A
again.

e In C++, we can't use a function before we've declared it, so when we
write mutually recursive procedures, we have to make a function
prototype.

* So, before the function DeleteRoot (), we put in a function prototype
for the function DeleteLeftmost(). The actual code for
DeleteLeftmost () comes later, after the DeleteRoot () procedure.

Soprototype required for forward references
vold deleteleftmost (TreePtr Ltree.
string &leftmost):

PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures

Lecture 9 — Binary Trees

Efficiency Issues

e Insertion and lookup in an ordered binary tree are, in
general, more efficient than insertion and lookup in an
ordered list.

* Intuitively, we can see why.

e To find an element in an ordered binary tree, the worst
we ever have to do is search down to the lowest layer
of the tree. If the tree has 4 layers, it can store
1+2+4+8 = 15 elements, but it only takes a maximum
of 5 iterations of a loop to find any element.

 Contrast this with an ordered list of 15 elements. There
it could take as many as 15 iterations around a loop to
find an element.

PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures

9.31

Lecture 9 — Binary Trees 9.32

Balanced Trees

e In a balanced ordered binary tree, each iteration of the lookup loop
halves the number of elements left to search through.

= So on average, we can expect lookup to take roughly log(N) steps.

e But the tree has to be reasonably well balanced to get good results. A
completely balanced tree is one in which every node in every layer above
the bottom layer has two children.

* When a tree is very unbalanced it is just like a list. So in the worst case
lookup can take as long as lookup in a list.

* We can improve our insertion procedure by rebalancing the tree after
each insertion. (We won't give details here.)
A

/N N\
C B \

A Balanced Tree C

An Unbalanced Tree

PYKC 15 March 2006 EE2/ISE1 Algorithms & Data Structures

