Lesson 08 - Introduction to Classes

1 0f29

http://www .functionx.com/cppl

GIVE BLOOD *

bloodsaves.com

Introduction to Classes

Classes: An Introduction

The data types we have applied so far to our variables were used to identify
individual items. To create more advanced and complete objects, C++ allows you to
group these identifiers and create a newly defined object.

Introduction to Classes

An object, such as a CD Player, a printer, a car, etc, is built from assembling various
parts. In the same way, C++ allows you to group various variables and create a new
object called a class.

Imagine a company that manufactures shoe boxes hires you to write a program that
would help design and identify those shoe boxes. A shoe box is recognized for its
dimensions (length, width, height), color, and shoe size that a particular box can
contain, etc. The variables that characterize such an object could be:

Double Length, Width, Height;
PChar Color;
Single ShoeSize;

And the program that defines a shoe box object could be:

#include <vcl.h>
#include <iostream.h>
#pragma hdrstop

#pragma argsused
int main(int argc, char* argv[])
{
// Define the characteristics of a shoe box
// The following characteristics are COMPLETELY random
Double Length(12.55), Width(6.32), Height(8.74);
PChar Color ("Yellow Stone");
Single ShoeSize = 10.50;

// Display the characteristics of the shoe box
cout << "Characteristics of this shoe box";

cout << "\n\tLength = " << Length
<< "\n\tWidth = " << Width
<< "\n\tHeight = " << Height
<< "\n\tVolume = " << Length * Width * Height
<< "\n\tColor = " << Color
<< "\n\tSize = " << ShoeSize;
cout << "\n\nPress any key to continue...";
getchar () ;

return 0;

The program would produce:

Characteristics of this shoe box

Lesson 08 - Introduction to Classes

Height = 8.74
Volume = 693.222
Color = Yellow Stone
Size = 10.5
Press any key to continue...
Unless dealing with one shoe box, this program would be rudimentary to run for

each object. The solution is to create an object called box that groups everything
that characterizes the object.

[T Object Concept

1. Start Bcb if not yet. To create a new project, on the main menu, click File ->
New...

2. From the New property sheet of the New Items dialog box, click the Console
Wizard icon and click OK.

3. On the Console Wizard dialog, click the C++ radio button and the Console
Application check box only (no VCL, no Multi-Threaded).

. Click OK

. To save the project, on the Standard toolbar, click the Save All button.
. Create a new folder called Employees

. Save the file as Main in the Employees folder

. Save the project as Employees

© 0 N O g b

. Change the content of the file as follows:

#include <iostream.h>
#pragma hdrstop

#pragma argsused
int main(int argc, char* argv([])
{
string FirstName = "Bertine";
string LastName = "Lamond";
double TotalHours = 36.50;
double HourlySalary = 8.52;
double WeeklySalary = TotalHours * HourlySalary;

cout << "Information about the employee";

cout << "\n\tEmployee Name: " << FirstName << " " << LastName;
cout << "\n\tWeekly Hours: " << TotalHours;

cout << "\n\tHourly Salary: $" << HourlySalary;

cout << "\n\tWeekly Salary: $" << WeeklySalary;

cout << "\n\nPress any key to continue...";
getchar () ;
return 0;

10. To test the program, press F9. The program would produce:

Information about the employee
Employee Name: Bertine Lamond
Weekly Hours: 36.5
Hourly Salary: $8.52
Weekly Salary: $310.98

17/01/2006 09:42

http://www functionx.com/cppbcb/Lesson08.htm

Lesson 08 - Introduction to Classes

30f29

http://www.functionx.com/cppbcb/Lesson08.htm

Press any key to continue...
11. Return to Bcb

12. To request the values of the variables, change the program as follows:

#include <iostream.h>
#include <iomanip.h>
#pragma hdrstop

#pragma argsused

int main(int argc, char* argvl[])

{
string FirstName, LastName;
double TotalHours, HourlySalary;
double WeeklySalary;

cout << "Enter the following pieces of information about the employee\n";
cout << "First Name: ";

cin >> FirstName;

cout << "Last Name: ";

cin >> LastName;

cout << "Hours worked this week: ";

cin >> TotalHours;

cout << "Hourly Salary: $";

cin >> HourlySalary;

WeeklySalary = TotalHours * HourlySalary;

cout << "\nInformation about the employee";

cout << "\n\tEmployee Name: " << FirstName << " " << LastName;
cout << setiosflags(ios::fixed) << setprecision(2);
cout << "\n\tWeekly Hours: " << TotalHours;

cout << "\n\tHourly Salary: $" << HourlySalary;
cout << "\n\tWeekly Salary: $" << WeeklySalary;

cout << "\n\nPress any key to continue...";
getchar () ;
return 0;

13. Press F9 to test the program:

Enter the following pieces of information about the employee
First Name: Alain

Last Name: Browns

Hours worked this week: 35.50

Hourly Salary: $12.20

Information about the employee
Employee Name: Alain Browns
Weekly Hours: 35.50
Hourly Salary: $12.20
Weekly Salary: $433.10
Press any key to continue...

14. Return to Bcb
Creating a Class
To create a class, use the class keyword followed by a name for the object. Like any

other declared variable, the class declaration ends with a semi-colon. The name of a
class follows the rules we have applied so far for variable and function names. To

17/01/2006 09:42

Lesson 08 - Introduction to Classes

4 0f 29

http://www functionx.com/cppbcb/Lesson08.htm

declare a class called ShoeBox, we would type the following:
class ShoeBox;

As a name that represents a group of items, a class has a body that would be used
to define the items that compose it. The body of a class starts with an opening curly
bracket "{" and ends with a closing one "}". Therefore, another way to create a class
is:

class ClassNamef{};

This could also be created as:

class ClassName {

bi
or

class ClassName
{
bi

Either of these techniques produces the same effect.

Since a class is built from combining other identifiers, you will list each variable
inside of the body of the class. Each item that composes the class is represented as
a complete variable declared with a data type and a name. As a variable, each
declaration must end with a semi-colon.
Continuing with our shoe box object, we could create it using the class as follows:
class ShoeBox
{

Double Length, Width, Height;

PChar Color;

Single ShoeSize;
bi

The items that compose a class are called members of the class. As a convention,
the names of objects in C++ Builder start with T. For example, an object created as

class Parking;
would be created as
class TParking;

This naming convention applies to enumerators, structures, unions, and classes. We
will also use it when naming our objects.

[T Creating a Class

1. To add a class to our exercise, change the content of the file as follows:

#include <iostream.h>
#pragma hdrstop

#pragma argsused
class TEmployee
{
string FirstName;
string LastName;

17/01/2006 09:42

Lesson 08 - Introduction to Classes http://www.functionx.com/cppbcb/Lesson08.htm

double TotalHours;
double HourlySalary;
double WeeklySalary;

int main(int argc, char* argvl[])

cout << "Press any key to continue...";
getchar () ;
return 0;

2. To test the program, on the main menu, click Run -> Run

3. As you can see, the program does not do much. Press any key to return to Bcb
Accessing a Class

A common object in real life is visibly made of two categories of parts: those you can
see or touch and those you do not have access to. The parts you can see or touch are
considered visible or accessible. In C++, such parts are referred to as public. Those
you cannot see or touch are considered hidden. In C++, such parts are referred to as
private. Like objects in real life, a class is made of sections that the other functions
or other objects cannot “see” and those the other objects can access. The other
objects of of the program are sometimes referred to as the clients of the object. The
parts the client of an object can touch in a class are considered public and the others
are private.

When creating a class, you will define which items are public and which ones are
private. The items that are public are created in a section that starts with the public
keyword followed by a semi-colon. The others are in the private section. If you do
not specify these sections, all of the members of a class are considered private. For
example, all of the members of the previously defined TShoeBox class are private.

Using the public and private sections, our shoe box object can be created as:

class TShoeBox

{

public:
Double Length, Width, Height;
PChar Color;

private:
Single ShoeSize;

bi

The public and private keywords are referenced by their access level because they
control how much access a variable allows. You can create as many public sections
or as many private sections as you want. For example, the above class could be
created as:

class TShoeBox
{
public:
Double Length, Width, Height;
public:
PChar Color;
Double Volume;
private:
Single ShoeSize;
private:
Char Material;
String Color;
bi

When creating a class with different public and private sections, all of the declared

50f29 17/01/2006 09:42

Lesson 08 - Introduction to Classes

6 0f 29

http://www functionx.com/cppbcb/Lesson08.htm

variables under an access level keyword abide by the rules of that access level. The
fact that you use different public sections does not by any means warrant different
public levels to the variables. A variable declared as public in one public section has
the same public level of access as any other variable that is declared in another
public section.

A variable that is declared in a class is called a member of the class. Once the class
has been defined, you can use it as an individual variable.

T Accessing a Class

e To add access levels to our class, change the class definition as follows:

class TEmployee

{

public:
string FirstName;
string LastName;
double TotalHours;
double HourlySalary;

private:

Declaring a Class

After defining a class, you can declare it as a variable using the same syntax we
have used for any other variable. A class is declared using its name followed by a
name for the defined variable and ending with a semi-colon. For example, our
TShoeBox class can be declared as follows:

TShoeBox Shake;

When an object has been declared, you can access any of its members using the
member access operator ".". First, type the name of the object variable, followed by
a period, followed by the name of the member you want to access. For example, to
access the member Length of the above class, you would write:

Shake.Length;
Using this syntax, you can display the value of a class member:
cout << Shake.Length;

or you can request its value from the user, using the cin operator. Here is an
example:

cin >> Shake.Lengh;

C++ Builder can help you remember and select the right member of an object.
When using an object variable, type the declared variable name followed by a
period. C++ Builder will display the list of accessible members; you can choose from
the list. Type the first letter of the member and it would be selected. If there is more
than one member that start with the same letter, you can continue typing
subsequent letters or you can scroll in the list. You can also click the desired
member in the list. Once the item is highlighted, press the Spacebar and continue
your work. This feature is referred to as Code Completion (in some Microsoft
documents, it is called Intellisense). Sometimes, the code completion seems slow.
You can modify its timing in the Code Insight property page of the Editor Properties
dialog box:

17/01/2006 09:42

Lesson 08 - Introduction to Classes

7 0f 29

http://www.functionx.com/cppbcb/Lesson08.htm

By default, the Delay timer is set to 1 second. | recommend you set it to the lowest
value:

Using the cout operator to display the values of the object members, our program
could be as follows:

#include <vcl.h>
#include <iostream.h>
#pragma hdrstop

#pragma argsused

class TShoeBox{

public:
Double Length, Width, Height;
PChar Color;

private:
Single ShoeSize;

bi

int main(int argc, char* argv([])
{
TShoeBox Shake;

// Display the characteristics of the shoe box
cout << "Characteristics of this shoe box";

cout << "\n\tLength = " << Shake.Length
<< "\n\tWidth = " << Shake.Width
<< "\n\tHeight = " << Shake.Height
<< "\n\tVolume = " << Shake.Length * Shake.Width * Shake.Height
<< "\n\tColor = " << Shake.Color
<< "\n\tSize = " << Shake.ShoeSize;

cout << "\n\nPress any key to continue...";
getchar () ;
return 0;

17/01/2006 09:42

Lesson 08 - Introduction to Classes

8 0f 29

http://www functionx.com/cppbcb/Lesson08.htm

At this time, because of trying to access a private member, the program would
produce the following error

[C++ Error] Unitl.cpp(30): E2247 'TShoeBox::TShoeSize' is not accessible

Even if you change the ShoeSize member access from private to public, the program
would render unpredictable results because the members have not been given
appropriate values:

Characteristics of this shoe box Length = 0 Width = 1.79571e-307 Height =
4.17266e-315 Volume = 0 Color = Size = 3.58732e-43Press any key to continue...

1 Declaring a Class

1. Declare an employee object and initialize its members as follows:

int main(int argc, char* argv([])
{

TEmployee FullTime;

double WeeklySalary;

FullTime.FirstName = "Chester";
FullTime.LastName = "Stanley";
FullTime.TotalHours = 42.00;

FullTime.HourlySalary = 10.63;

cout << "Press any key to continue...";
getchar () ;
return 0;

2. Display the members of the Employee class as follows:

#include <iostream.h>
#include <iomanip.h>
#pragma hdrstop

#pragma argsused

class TEmployee

{

public:
string FirstName;
string LastName;
double TotalHours;
double HourlySalary;
double WeeklySalary;

private:

bi

int main(int argc, char* argv[])
{

TEmployee FullTime;

double WeeklySalary;

17/01/2006 09:42

Lesson 08 - Introduction to Classes

9 0f 29

FullTime.FirstName = "Chester";
FullTime.LastName = "Stanley";
FullTime.TotalHours = 42.00;

FullTime.HourlySalary = 10.63;

WeeklySalary = FullTime.TotalHours * FullTime.HourlySalary;

cout << "Information about the employee";
cout << "\n\tFull Name: "

<< FullTime.FirstName << " " << FullTime.LastName;
cout << "\n\tTotal Weekly Hours: "

<< setiosflags(ios::fixed) << setprecision(2)

<< FullTime.TotalHours;
cout << "\n\tHourly Salary: $" << FullTime.HourlySalary;
cout << "\n\tWeekly Salary: $" << WeeklySalary;

cout << "\n\nPress any key to continue...";
getchar () ;
return 0;

3. Press F9 to test the program:

Information about the employee
Full Name: Chester Stanley
Total Weekly Hours: 42.00
Hourly Salary: $10.63
Weekly Salary: $446.46

Press any key to continue...

4. Return to Bcb

5. To request the values of the members of a class, change the file as follows:

#include <iostream.h>
#include <iomanip.h>
#pragma hdrstop

#pragma argsused

class TEmployee

{

public:
string FirstName;
string LastName;
double TotalHours;
double HourlySalary;
double WeeklySalary;

private:

bi

int main(int argc, char* argvl[])
{

TEmployee Seasonal;

double WeeklySalary;

cout << "Enter the following pieces of information about this

cout << "First Name: ";

cin >> Seasonal.FirstName;

cout << "Last Name: ";

cin >> Seasonal.LastName;

cout << "Hourly Salary: $";

cin >> Seasonal.HourlySalary;
cout << "Total Weekly Hours: ";
cin >> Seasonal.TotalHours;

employee\n";

http://www.functionx.com/cppbcb/Lesson08.htm

17/01/2006 09:42

Lesson 08 - Introduction to Classes

10 of 29

WeeklySalary = Seasonal.TotalHours * Seasonal.HourlySalary;

cout << "\nInformation about the employee";
cout << "\n\tFull Name: "

<< Seasonal.FirstName << " " << Seasonal.LastName;
cout << "\n\tTotal Weekly Hours: "

<< setiosflags(ios::fixed) << setprecision(2)

<< Seasonal.TotalHours;
cout << "\n\tHourly Salary: $" << Seasonal.HourlySalary;
cout << "\n\tWeekly Salary: $" << WeeklySalary;

cout << "\n\nPress any key to continue...";
getchar () ;
return 0;

. Press F9 to test the program:

Enter the following pieces of information about this employee
First Name: Marlyse

Last Name: Dietch

Hourly Salary: $10.85

Total Weekly Hours: 42.50

Information about the employee
Full Name: Marlyse Dietch
Total Weekly Hours: 42.50
Hourly Salary: $10.85
Weekly Salary: $461.12

Press any key to continue...

7. Return to Bcb

the file as follows:

#include <iostream.h>
#include <iomanip.h>
#pragma hdrstop

#pragma argsused

class TEmployee

{

public:
string FirstName;
string LastName;
double TotalHours;
double HourlySalary;
double WeeklySalary;

private:

int main(int argc, char* argv([])
{
TEmployee Seasonal;
// Hours for each day
double Mon, Tue, Wed, Thu, Fri, Sat, Sun;
double WeeklySalary;

cout << "Enter the following pieces of information about this
cout << "First Name: "; cin >> Seasonal.FirstName;

cout << "Last Name: "; cin >> Seasonal.LastName;

cout << "Hourly Salary: $"; cin >> Seasonal.HourlySalary;
cout << "Enter the number of hours for each day\n";

8. To calculate the value of a member using values from external variables, change

employee\n";

http://www functionx.com/cppbcb/Lesson08.htm

17/01/2006 09:42

Lesson 08 - Introduction to Classes

cout << "Monday: "; cin >> Mon;
cout << "Tuesday: "; cin >> Tue;
cout << "Wednesday: "; cin >> Wed;
cout << "Thursday: cin >> Thu;
cout << "Friday: "; cin >> Fri;
cout << "Saturday: "; cin >> Sat;
cout << "Sunday: "; cin >> Sun;

Seasonal.TotalHours = Mon + Tue + Wed + Thu + Fri + Sat + Sun;
WeeklySalary = Seasonal.TotalHours * Seasonal.HourlySalary;

cout << "\nInformation about the employee";
cout << "\n\tFull Name: "

<< Seasonal.FirstName << " " << Seasonal.LastName;
cout << "\n\tTotal Weekly Hours: "

<< setiosflags(ios::fixed) << setprecision(2)

<< Seasonal.TotalHours;
cout << "\n\tHourly Salary: $" << Seasonal.HourlySalary;
cout << "\n\tWeekly Salary: $" << WeeklySalary;

cout << "\n\nPress any key to continue...";
getchar () ;
return 0;

9. Press F9 to test the program. Here is an example:

Enter the following pieces of information about this employee
First Name: Theodore

Last Name: Amis

Hourly Salary: $8.95

Enter the number of hours for each day
Monday: 8.00

Tuesday: 8.50

Wednesday: 9.00

Thursday: 8.00

Friday: 8.00

Saturday: 0

Sunday: 0

Information about the employee
Full Name: Theodore Amis
Total Weekly Hours: 41.50
Hourly Salary: $8.95
Weekly Salary: $371.42

Press any key to continue...
10. Return to Bcb

11. When the user is typing the amount of hours for each day, you should make sure
that entries such —8.00 or 25 are not allowed because the user cannot work for
negative hours, and the user cannot work more than 24 hour in one day. To take
care of this situation, implementation a function that would use a conditional
statement to control what the user would type. Consequently, you can change
the implementation of the main() function:

#include <iostream.h>
#include <iomanip.h>
#pragma hdrstop

#pragma argsused
class TEmployee

{

11 0f29

http://www.functionx.com/cppbcb/Lesson08.htm

17/01/2006 09:42

Lesson 08 - Introduction to Classes

public:
string FirstName;
string LastName;
double TotalHours;
double HourlySalary;
double WeeklySalary;
private:

double _ fastcall ObtainDailyHours(string s)
{
double h;

do {
cout << s << ": "y
cin >> h;
if(h < 0 || h > 24)
cout << "Please enter a number between 0.00 and 24.00\n";
}while(h < 0 || h > 24);

return h;

int main(int argc, char* argv[])

TEmployee Seasonal;

// Hours for each day

double Mon, Tue, Wed, Thu, Fri, Sat, Sun;
double WeeklySalary;

cout << "Enter the following pieces of information about this employee\n";
cout << "First Name: "; cin >> Seasonal.FirstName;

cout << "Last Name: "; cin >> Seasonal.LastName;

cout << "Hourly Salary: $"; cin >> Seasonal.HourlySalary;

cout << "Enter the number of hours for each day\n";

Mon = ObtainDailyHours ("Monday") ;

Tue = ObtainDailyHours ("Tuesday");

Wed = ObtainDailyHours ("Wednesday") ;

Thu = ObtainDailyHours ("Thursday");

Fri = ObtainDailyHours ("Friday");
Sat = ObtainDailyHours ("Saturday");
Sun = ObtainDailyHours ("Sunday") ;

Seasonal.TotalHours = Mon + Tue + Wed + Thu + Fri + Sat + Sun;
WeeklySalary = Seasonal.TotalHours * Seasonal.HourlySalary;

cout << "\nInformation about the employee";
cout << "\n\tFull Name: "

<< Seasonal.FirstName << " " << Seasonal.LastName;
cout << "\n\tTotal Weekly Hours: "

<< setiosflags(ios::fixed) << setprecision(2)

<< Seasonal.TotalHours;
cout << "\n\tHourly Salary: $" << Seasonal.HourlySalary;
cout << "\n\tWeekly Salary: $" << WeeklySalary;

cout << "\n\nPress any key to continue...";
getchar () ;
return 0;

12. Test the program to make sure it is working. Here is an example:

Enter the following pieces of information about this employee
First Name: Paul

Last Name: Kitts

Hourly Salary: $10.25

Enter the number of hours for each day

Monday: 8.00

Tuesday: -5

12 of 29

http://www functionx.com/cppbcb/Lesson08.htm

17/01/2006 09:42

Lesson 08 - Introduction to Classes http://www.functionx.com/cppbcb/Lesson08.htm

Please enter a number between 0.00 and 24.00
Tuesday: 8.00

Wednesday: 9.50

Thursday: 8.00

Friday: 8
Saturday: 0
Sunday: 0

Information about the employee
Full Name: Paul Kitts
Total Weekly Hours: 41.50
Hourly Salary: $10.25
Weekly Salary: $425.38

Press any key to continue...

13. Return to Bcb

14. Whenever doing a payroll, something you should always pay attention is the
calculation of overtime if the employee has worked more than 40 hours in a
week.

Add the following commented function to take care of calculating weekly gross
pay in factor of possible overtime:

#include <iostream.h>
#include <iomanip.h>
#pragma hdrstop

#pragma argsused

class TEmployee

{

public:
string FirstName;
string LastName;
double TotalHours;
double HourlySalary;
double WeeklySalary;

double h;

do {
cout << s << ": ",
cin >> h;
if(h <0 || h > 24)
cout << "Please enter a number between 0.00 and 24.00\n";
}while(h < 0 [| h > 24);

return h;

double _ fastcall CalcGrossPay(const double Hours, const double Salary)

{

double Gross;
if(Hours > 40)
{
double OvertimeHours, RegularSalary, OvertimeGross;
// If the total of weekly hours is above 40
// then the employee has overtime
RegularSalary = Salary * 40;

// The overtime is anything above 40 hours

13 0of 29

17/01/2006 09:42

Lesson 08 - Introduction to Classes http://www functionx.com/cppbcb/Lesson08.htm

OvertimeHours = Hours - 40;

// Hourly overtime salary is calculated by adding half
// of the salary to the regular hourly salary
double OvertimeSalary = Salary + (Salary * 0.50);

// To calculate the overtime salary, multiply the overtime
// hours to the overtime salary
OvertimeGross = OvertimeHours * OvertimeSalary;

// Now we have the regular salary and the overtime wage
// Simply add them to get the gross weekly earnings
Gross = RegularSalary + OvertimeGross;

}

// Since the employee's total hours are less than 40,

// there is no overtime

else

{
//OvertimeHours = 0.00;
//OvertimeGross = 0.00;

//RegularHours = Hours;
//RegularSalary = Salary * Hours;
Gross = Salary * Hours;

}

return Gross;

int main(int argc, char* argv[])

TEmployee Seasonal;

// Hours for each day

double Mon, Tue, Wed, Thu, Fri, Sat, Sun, Total;
double Hourly;//, WeeklySalary;

cout << "Enter the following pieces of information about this employee\n";
cout << "First Name: "; cin >> Seasonal.FirstName;

cout << "Last Name: "; cin >> Seasonal.LastName;

cout << "Hourly Salary: $"; cin >> Seasonal.HourlySalary;

cout << "Enter the number of hours for each day\n";

Mon = ObtainDailyHours ("Monday") ;

Tue = ObtainDailyHours ("Tuesday");

Wed = ObtainDailyHours ("Wednesday") ;

Thu = ObtainDailyHours ("Thursday");

Fri = ObtainDailyHours ("Friday");
Sat = ObtainDailyHours ("Saturday");
Sun = ObtainDailyHours ("Sunday") ;

Total = Mon + Tue + Wed + Thu + Fri + Sat + Sun;
Seasonal.TotalHours = Total;

Hourly = Seasonal.HourlySalary;
Seasonal.WeeklySalary = CalcGrossPay(Total, Hourly);

cout << "\nInformation about the employee";
cout << "\n\tFull Name: "

<< Seasonal.FirstName << " " << Seasonal.LastName;
cout << "\n\tTotal Weekly Hours: "

<< setiosflags(ios::fixed) << setprecision(2)

<< Seasonal.TotalHours;
cout << "\n\tHourly Salary: $" << Seasonal.HourlySalary;
cout << "\n\tWeekly Salary: $" << Seasonal.WeeklySalary;
cout << "\n\nPress any key to continue...";
getchar () ;
getchar () ;
return 0;

15. Test the program twice to make sure it behaves appropriately. Test it once with
less than 40 hours; test it again with overtime.

14 of 29

17/01/2006 09:42

Lesson 08 - Introduction to Classes http://www.functionx.com/cppbcb/Lesson08.htm

16. Return to Bcb
Techniques of Initializing a Class

There are various techniques used to initialize a class: initializing individual
members or initializing the class as a whole.

To initialize a member of a class, access it and assign it an appropriate value.

#include <vcl.h>
#include <iostream.h>
#pragma hdrstop

#pragma argsused

class TShoeBox

{

public:
Double Length, Width, Height;
PChar Color;
Single ShoeSize;

private:

int main(int argc, char* argv([])
{

TShoeBox Shake;

Double Volume;

// Initializing each member of the class
Shake.Length = 12.55;

Shake.Width = 6.32;
Shake.Height = 8.74;
Shake.Color = "Yellow Stone";

Shake.ShoeSize = 10.50;
Volume = Shake.Length * Shake.Width * Shake.Height;

// Display the characteristics of the shoe box
cout << "Characteristics of this shoe box";

cout << "\n\tLength = " << Shake.Length
<< "\n\tWidth = " << Shake.Width
<< "\n\tHeight = " << Shake.Height
<< "\n\tVolume = " << Volume
<< "\n\tColor = " << Shake.Color
<< "\n\tSize = " << Shake.ShoeSize;

cout << "\n\nPress any key to continue...";
getchar () ;
return 0;

This time, the program would render a reasonable result:

Characteristics of this shoe box
Length = 12.55
Wid 6.32
Height = 8.74
Volume = 693.222
Color = Yellow Stone
Size = 10.5

Press any key to continue...

You can also initialize an object as a variable. This time, type the name of the

15 0f 29 17/01/2006 09:42

Lesson 08 - Introduction to Classes http://www functionx.com/cppbcb/Lesson08.htm

variable followed by the assignment operator, followed by the desired values of the
variables listed between an opening and a closing curly brackets; each value is
separated with a comma. The first rule you must keep in mind is that the list of
variables must follow the order of the declared members of the class. The second
rule you must observe is that none of the members of the class must be another
class:

#include <vcl.h>
#include <iostream.h>
#pragma hdrstop

#pragma argsused

class TShoeBox

{

public:
Double Length, Width, Height;
PChar Color;
Single ShoeSize;

private:

int main(int argc, char* argv[])

{
// Declaring and initializing the class as a variable
TShoeBox LadyShake = { 12.55, 6.32, 8.74, "Yellow Stone", 10.50 };
Double Volume = LadyShake.Length * LadyShake.Width * LadyShake.Height;

// Display the characteristics of the shoe box
cout << "Characteristics of this shoe box";

cout << "\n\tLength = " << LadyShake.Length
<< "\n\tWidth = " << LadyShake.Width
<< "\n\tHeight = " << LadyShake.Height
<< "\n\tVolume = " << Volume
<< "\n\tColor = " << LadyShake.Color
<< "\n\tSize = " << LadyShake.ShoeSize;

cout << "\n\nPress any key to continue...";
getchar () ;
return 0;

Classes and Methods

The primary motivation of using classes in a program is to create objects as
complete as possible. An object must be able to handle its own business so that the
other objects of the program or of another program would only need to know which
object can take care of a particular need they have.

A regular variable, as a member of an object, cannot handle assignments; this job is
handled by particular functions declared as members of a class. A function as a
member of a class is also called a Method. Therefore, in this book, the word
“method”, when associate with a class, refers to a function that is a member of that
class.

Declaring Methods

As a member of an object, a method is declared like any of the functions we have
used so far; it could or could not return a value.

The shoe box we have been using so far needs a volume that would be used to
determine what size can fit in the box. Therefore, we will use a member function

16 of 29 17/01/2006 09:42

Lesson 08 - Introduction to Classes

17 of 29

http://www.functionx.com/cppbcb/Lesson08.htm

that can perform that calculation. Our object, when including methods could be
structured as follows:

class TShoeBox
{
public:
Double Length;
Double Width;
Double Height;
PChar Color;
Single ObtainShoeSize();
Double CalcVolume () ;
private:
bi

When using methods on a class, the variables are used to hold or store values, called
data, of the object, while methods are used to perform assignments as related to the
objects. One way you can control the data held by variables is to hide data from the
"external world". To achieve this, you should declare the member variables in the
private section. After doing this, use the methods in the public section to help the
class interact with the other objects or functions of the program. At this time, our
TShoeBox object would look like this:

class TShoeBox
{
public:
Single ObtainShoeSize () ;
Double CalcVolume () ;
PChar Color;
private:
Double Length;
Double Width;
Double Height;
bi

There are at least two techniques you can use to implement a method member

[Adding Methods to an Object

e To add methods to our project, change the content of the file as follows:

class TEmployee

{

public:
void IdentifyEmployee();
void GetHourlySalary();
void CalcTotalHours();
void CalcGrossPay();
void Display();

private:
string FirstName;
string LastName;
double TotalHours;
double HourlySalary;
double GrossPay;

Implementing Methods Locally

To implement a method in the class where it is declared, use the same techniques
we used to define regular functions. When a method is a class' member, it has
access to the member variables of the same class; this means you do not need to
pass the variables as arguments (there are cases when you will need to); you can

17/01/2006 09:42

Lesson 08 - Introduction to Classes

18 of 29

http://www functionx.com/cppbcb/Lesson08.htm

just use any of them as if it were supplied. Here is how you would define the
CalcVolume() method inside of the TShoeBox class:

class TShoeBox
{
public:
Single ObtainShoeSize();
Double CalcVolume ()
{
return (Length * Width * Height);
}
PChar Color;
private:
Double Length;
Double Width Double Height;
bi

If your class has a lot of methods, this technique could be cumbersome. You should
use it only for small methods.

T Implementing Methods Locally

1. To implement methods locally, change the content of the class as follows:

#include <iostream.h>
#include <iomanip.h>
#pragma hdrstop

#pragma argsused
double _ fastcall ObtainDailyHours(string s);

class TEmployee
{
public:

void IdentifyEmployee ()
{
cout << "Enter the following pieces of information "
<< "about this employee\n";
cout << "First Name: ";
cin >> FirstName;
cout << "Last Name: ";
cin >> LastName;

}

void GetHourlySalary ()

{
cout << "Hourly Salary: $";
cin >> HourlySalary;

}

void CalcTotalHours ()
{
double Mon, Tue, Wed, Thu, Fri, Sat, Sun;

cout << "Enter the number of hours for each day\n";
Mon = ObtainDailyHours ("Monday");

Tue = ObtainDailyHours ("Tuesday");

Wed = ObtainDailyHours ("Wednesday") ;

Thu = ObtainDailyHours ("Thursday");

Fri = ObtainDailyHours ("Friday");

Sat = ObtainDailyHours ("Saturday");

Sun = ObtainDailyHours ("Sunday");

17/01/2006 09:42

Lesson 08 - Introduction to Classes

19 of 29

http://www.functionx.com/cppbcb/Lesson08.htm

// Calculate the total weekly hours
TotalHours = Mon + Tue + Wed + Thu + Fri + Sat + Sun;
}

void CalcGrossPay ()

{
if(TotalHours > 40)
{

double OvertimeHours, RegularSalary, OvertimeGross;

// If the total of weekly hours is above 40
// then the employee has overtime
RegularSalary = HourlySalary * 40;

// The overtime is anything above 40 hours
OvertimeHours = TotalHours - 40;

// Hourly overtime salary is calculated by adding half

// of the salary to the regular hourly salary

double OvertimeSalary = HourlySalary + (HourlySalary * 0.50);
// To calculate the overtime salary, multiply the overtime

// hours to the overtime salary

OvertimeGross = OvertimeHours * OvertimeSalary;

// Now we have the regular salary and the overtime wage
// Simply add them to get the gross weekly earnings
GrossPay = RegularSalary + OvertimeGross;

}

// Since the employee's total hours are less than 40,

// there is no overtime

else
GrossPay = HourlySalary * TotalHours;

}

void Display ()
{
cout << "\nEmployee Payroll Information";
cout << "\n\tFull Name: " << FirstName << " " << LastName;
cout << "\n\tTotal Weekly Hours: "
<< setiosflags(ios::fixed) << setprecision(2)
<< TotalHours;
cout << "\n\tHourly Salary: $" << HourlySalary;
cout << "\n\tWeekly Salary: $" << GrossPay;
}

private:
string FirstName;
string LastName;
double TotalHours;
double HourlySalary;
double WeeklySalary;
double GrossPay;

double _ fastcall ObtainDailyHours(string s)
{

double h;

do {

cout << s << ": M
cin >> h;
if(h <0 || h > 24)
cout << "Please enter a number between 0.00 and 24.00\n";
}while(h < 0 || h > 24);

return h;

int main(int argc, char* argvl[])

{

17/01/2006 09:42

Lesson 08 - Introduction to Classes

20 of 29

http://www functionx.com/cppbcb/Lesson08.htm

TEmployee Contractor;

Contractor.IdentifyEmployee () ;
Contractor.GetHourlySalary () ;
Contractor.CalcTotalHours () ;
Contractor.CalcGrossPay () ;
Contractor.Display () ;

cout << "\n\nPress any key to continue...";
getchar () ;
return 0;

2. To test the program, on the main menu, click Run @ Run. Here is an example of
running the program:

Enter the following pieces of information about this employee
First Name: Jeanine

Last Name: Bliss

Hourly Salary: $14.55

Enter the number of hours for each day

Monday: 8

Tuesday: 9.50

Wednesday: 7.50

Thursday: 8.50

Friday: 8
Saturday: 0
Sunday: 0

Employee Payroll Information
Full Name: Jeanine Bliss
Total Weekly Hours: 41.50
Hourly Salary: $14.55
Weekly Salary: $614.74

Press any key to continue...

3. Return to Bcb
Implementing Methods Globally

When the methods execute long assignments, you should implement them outside
of the object by first accessing the desired function member of the class. To access a

method of a class when implementing it, instead of the member access operator “.”,
you will use the scope resolution operator represented as two colons ::

To implement a method outside of the class, type the return value of the method,
followed by the class' name, followed by the scope resolution operator “::”, followed
by the method's name, followed by the arguments, if any, between parentheses, and
finally define what the function should do, in its body.

Another implementation of our CalcVolume() method would be:

class TShoeBox

{

public:
Single ObtainShoeSize () ;
Double CalcVolume () ;
PChar Color;

private:
Double Length;
Double Width;
Double Height;

17/01/2006 09:42

Lesson 08 - Introduction to Classes

21 0f29

Double TShoeBox::CalcVolume ()
{
return (Length * Width * Height);

7 Implementing Methods Globally

1. To implement the methods globally, change the content of the file as follows:

#include <iostream.h>
#include <iomanip.h>
#pragma hdrstop

#pragma argsused
double _ fastcall ObtainDailyHours(string s);

class TEmployee

{

public:
void IdentifyEmployee () ;
void GetHourlySalary();
void CalcTotalHours();
void CalcGrossPay () ;
void Display();

private:
string FirstName;
string LastName;
double TotalHours;
double HourlySalary;
double WeeklySalary;
double GrossPay;

void TEmployee::IdentifyEmployee ()
{
cout << "Enter the following pieces of information "
<< "about this employee\n";
cout << "First Name: ";
cin >> FirstName;
cout << "Last Name: ";
cin >> LastName;

void TEmployee::GetHourlySalary(
{
cout << "Hourly Salary: $";
cin >> HourlySalary;

void TEmployee::CalcTotalHours ()
{
double Mon, Tue, Wed, Thu, Fri, Sat, Sun;

cout << "Enter the number of hours for each day\n";
Mon = ObtainDailyHours ("Monday") ;

Tue = ObtainDailyHours ("Tuesday");

Wed = ObtainDailyHours ("Wednesday") ;

Thu = ObtainDailyHours ("Thursday");

Fri = ObtainDailyHours ("Friday");
Sat = ObtainDailyHours ("Saturday");
Sun = ObtainDailyHours ("Sunday") ;

// Calculate the total weekly hours

http://www.functionx.com/cppbcb/Lesson08.htm

17/01/2006 09:42

Lesson 08 - Introduction to Classes http://www functionx.com/cppbcb/Lesson08.htm

22 of 29

TotalHours = Mon + Tue + Wed + Thu + Fri + Sat + Sun;

void TEmployee::CalcGrossPay ()
{

if(TotalHours > 40)
{

double OvertimeHours, RegularSalary, OvertimeGross;

// If the total of weekly hours is above 40
// then the employee has overtime
RegularSalary = HourlySalary * 40;

// The overtime is anything above 40 hours
OvertimeHours = TotalHours - 40;

// Hourly overtime salary is calculated by adding half
// of the salary to the regular hourly salary
double OvertimeSalary = HourlySalary + (HourlySalary * 0.50);

// To calculate the overtime salary, multiply the overtime
// hours to the overtime salary
OvertimeGross = OvertimeHours * OvertimeSalary;

// Now we have the regular salary and the overtime wage
// Simply add them to get the gross weekly earnings
GrossPay = RegularSalary + OvertimeGross;

}

// Since the employee's total hours are less than 40,

// there is no overtime

else
GrossPay = HourlySalary * TotalHours;

void TEmployee::Display ()
{
cout << "\nEmployee Payroll Information";
cout << "\n\tFull Name: " << FirstName << " " << LastName;
cout << "\n\tTotal Weekly Hours: "
<< setiosflags(ios::fixed) << setprecision(2)
<< TotalHours;
cout << "\n\tHourly Salary: $" << HourlySalary;
cout << "\n\tWeekly Salary: $" << GrossPay;

T
double _ fastcall ObtainDailyHours(string s)
{
double h;
do {
cout << s << ": ";
cin >> h;
if(h <0 || h > 24)

cout << "Please enter a number between 0.00 and 24.00\n";
}while(h < 0 || h > 24);

return h;

int main(int argc, char* argv([])
TEmployee Contractor;

Contractor.IdentifyEmployee () ;
Contractor.GetHourlySalary () ;
Contractor.CalcTotalHours () ;
Contractor.CalcGrossPay () ;
Contractor.Display () ;

cout << "\n\nPress any key to continue...";
getchar () ;

17/01/2006 09:42

Lesson 08 - Introduction to Classes

return 0;

2. To test the program, press F9.
3. Return to Bcb

Inline Methods

When studying functions, we learned that an assignment can be carried where it is
being called. The same process can apply to a class’ member.

To declare a class’ method as inline, precede its name with the inline keyword when
declaring the method in the class:

class TShoeBox

{

public:
inline Double CalcVolume () ;
Single CalcShoeSize();
void Display();

private:

bi

You can choose which methods would be inline and which ones would not. When
implementing the method, you can precede the method with the inline keyword. You
can also omit the inline keyword in the class but use it when defining the method.

If you decide to implement a method locally (in the class), you have the option of
implementing it as inline:

class TShoeBox
{
public:
inline Double CalcVolume ()
{
return Length * Width * Height;

}

inline Single CalcShoeSize()
{
return Length - 0.35;
}
void Display();

private:
Double Length;
Double Width;
Double Height;
PChar Color;

On the other hand, if you omit the inline keyword, the C++ Builder compiler would
take care of it. Normally, any function implemented in the body of the class is
considered inline.

[T Using Inline Methods
1. To declare a new variable, expand the project name in the Class Explorer and

expand the TEmployee class folder. Right-click TEmployee (in the Class Explorer)
and click New Field...

23 0f 29

http://www.functionx.com/cppbcb/Lesson08.htm

17/01/2006 09:42

Lesson 08 - Introduction to Classes

2. In the Field Name edit box, type NetPay

3. In the Type combo box, type d and double-click the down-pointing arrow. The
keyword double will be selected.

4. In the Visibility section, click the Private radio button:

5. Click OK

6. To declare an inline method, right-click TEmployee in the Class Explorer and click
New Method...:

7. In the Method Name edit box, type IsMarried

24 of 29

http://www functionx.com/cppbcb/Lesson08.htm

17/01/2006 09:42

Lesson 08 - Introduction to Classes

8. Click the arrow of the Function Result combo box and select bool
9. In the Visibility section, click the Public radio button.

10. In the Implementation Details section, click the Inline check box

11. Click OK. The function will be added to the end of the file. As long as the scope

http://www.functionx.com/cppbcb/Lesson08.htm

resolution links the function to the class, the position of the function on the file is

not important.

12. Implement the method as follows:

bool inline TEmployee::IsMarried()
{

char Answer;

cout << "Are you married(y=Yes/n=No)? ";
cin >> Answer;

if(Answer == 'y' || Answer == 'Y'
return true;

else
return false;

13. To create an implicit inline method, right-click the TEmployee class in the Class
Explorer and click New Method.

14. Set the name of the method as CalcNetPay
15. Set the result type as void

16. In the Implementation Details section, click both the Inline and the Implicit
Inline check boxes:

25 0f 29

17/01/2006 09:42

Lesson 08 - Introduction to Classes

17. Click OK.

18. Notice that the method’s declaration and its body are ready in the TEmployee
class.

19. Implement the method as follows:

class TEmployee
{
public:

void CalcNetPay ()
{
if(IsMarried() == false)
NetPay = CalcGrossPay() - (CalcGrossPay() * 30 / 100);
else
NetPay = CalcGrossPay() ;
}

private:

Yi

#include <iostream.h>
#include <iomanip.h>
#include <conio.h>
#pragma hdrstop

#pragma argsused
double _ fastcall ObtainDailyHours(string s);

class TEmployee
{

private:

bi

26 of 29

http://www functionx.com/cppbcb/Lesson08.htm

17/01/2006 09:42

Lesson 08 - Introduction to Classes

27 of 29

void TEmployee::Display ()
{

cout << "Employee Payroll";

cout << "\nFull Name: " << FirstName << "

cout << "\nTotal Weekly Hours: "

http://www.functionx.com/cppbcb/Lesson08.htm

" << LastName;

<< setiosflags(ios::fixed) << setprecision(2)

<< TotalHours;

cout << "\nHourly Salary: $" << HourlySalary;

cout << "\nWeekly Salary: $" << GrossPay;

cout << "\nNet Weekly Salary: $" << NetPay;

cout << "Please enter a number between 0.00 and 24.00\n";

e ittt
double _ fastcall ObtainDailyHours(string s)
{
double h;
do {
cout << s << ": "
cin >> h;
if(h < 0 [| h > 24)
}while(h < 0 || h > 24);
return h;

int main(int argc, char* argv([])
TEmployee Contractor;

Contractor.IdentifyEmployee () ;
Contractor.GetHourlySalary() ;
Contractor.CalcTotalHours () ;
Contractor.CalcGrossPay () ;
Contractor.CalcNetPay() ;
clrscr();
Contractor.Display();

cout << "\n\nPress any key to continue...

getchar () ;
return 0;

21. To test the program, press F9.
22. Return to Bcb

Class Members Interactions

Regardless of how the member methods of an object are implemented, any method
can call another without using an access operator. This allows an object’s methods to
exchange information among themselves easily. Furthermore, unlike regular
functions where a function must be declared prior to another function calling it, the
method members of a class do not abide by that rule: one method can call another
method before or after the other has been implemented, as long as it is defined

somewhere.

class TShoeBox
{
public:

bi

17/01/2006 09:42

Lesson 08 - Introduction to Classes

void TShoeBox::Display (
{
// Initializing the dimensions
Length = 12.55;
width = 6.32;
Height = 8.74;
Color = "Early Breeze";

// Display the characteristics of the

cout << "Characteristics of this shoe box";

cout << "\n\tLength = " << Length
<< "\n\tWidth = " << Width
<< "\n\tHeight = " << Height
<< "\n\tVolume = " << CalcVolume ()
<< "\n\tColor = " << Color
<< "\n\tSize = " << CalcShoeSize();

Double TShoeBox::CalcVolume ()
{
return Length * Width * Height;

http://www functionx.com/cppbcb/Lesson08.htm

Once an object is defined and behaves as complete as possible, the other function or
objects of the program can make the appropriate calls trusting that the called object
can handle its assignments efficiently. This ability allows you to (tremendously)
reduce the work overload of the other components of a program.

The main() function can simply call the appropriate member of the TShoeBox object

now:

int main(int argc, char* argv([])
{
TShoeBox Sample;
Sample.Display () ;

cout << "\nPress any key to continue...";

getchar(); return 0;

[T Object Methods Interactions

1. To let a method call other member methods of the same object, change the

Display() method and the main() function as follows:

void TEmployee::Display ()
{

// Execute the prerequisite methods to prepare a payroll

IdentifyEmployee () ;
GetHourlySalary();
CalcTotalHours () ;
CalcGrossPay () ;
CalcNetPay () ;
clrscr();

cout << "Employee Payroll";

cout << "\nFull Name: " << FirstName << "

cout << "\nTotal Weekly Hours: "

<< setiosflags(ios::fixed) << setprecision(2)

<< TotalHours;

cout << "\nHourly Salary: $" << HourlySalary;
cout << "\nWeekly Salary: $" << GrossPay;
cout << "\nNet Weekly Salary: $" << NetPay;

28 of 29

" << LastName;

17/01/2006 09:42

Lesson 08 - Introduction to Classes http://www.functionx.com/cppbcb/Lesson08.htm

int main(int argc, char* argvl[])
{

TEmployee Contractor;
Contractor.Display () ;
cout << "\n\nPress any key to continue...";

getchar () ;
return 0;

2. To test the program, press F9.

3. After running the program, return to Bcb

Copyright © 2002-2003 FunctionX,

Next
Inc.

Previous

29 of 29 17/01/2006 09:42

