Lesson 03 - Introduction to Functions

1 of27

http://www .functionx.com/cp

GIVE BLOOD *

o bloodsaves.com

Introduction to Functions

C++> Names

A function is an assignment or a task you are asking C++ to perform for the
functionality of your program. There are two kinds of functions: those supplied to
you and those you will be writing. The functions that are supplied to you are usually
in three categories: those built-in Microsoft Windows operating system, those
written in C++ (they are part of the C++ language), and those written by Borland
(they are supplied to you with the compiler, included in the various libraries that
are installed with the compiler). The use of these functions is the same regardless
of the means you get them; you should know what a function looks like and how to
use one, what functions are already available, where they are located, and what a
particular function does, how and when to use them.

Function Definition

In order to create and use your function, you must let the compiler know. Letting
the compiler know about your function means you “declare” it. The syntax of
declaring a function is:

ReturnType FunctionName (Needs);

In English, an assignment considered a function is made of three parts: its
purpose, its needs, and the expectation.

Return Value

The purpose of a function identifies what the function is meant to do. When a
function has carried its assignment, it provides a result. For example, if a function
were supposed to calculate the area of a square, the result would be the area of a
square. The result of a function used to get a student’s first name would be a word
representing a student’s first name.

When you expect a specific result from a function, such as the area of a square, the
result would be a numeric value; another kind of result could be a word, etc. The
result of a function is called a return value. A function is also said to return a value.

There are two forms of expectations you will have from a function: to return a
specific value or to perform a simple assignment. If you want the function to
perform an assignment without giving you back a result, such a function is qualified
as void and would be declared as

void FunctionName(Needs);

A return value, if not void, can be any of the data types we have studied so far.
This means that a function can return a char, an int, a float, a double, a bool, or
a string. Here are examples of declaring functions by defining their return values:

double FunctionName(Needs);
char FunctionName(Needs);
bool FunctionName(Needs);
string FunctionName(Needs);

Lesson 03 - Introduction to Functions

2 0f 27

Function Names

A function name follows the same rules we have applied to our variables so far. In
addition, use a name that specifies what the function is expected to do. Usually, a
verb is appropriate for a function that performs an action; an example would be
add, start, assign, play, etc.

The names of most functions in C++ Builder start in uppercase. We will follow the
same convention in this book. Therefore, the above names would be: Add, Start,
Assign, Play.

If the assignment of a function is a combination of words, such as converting a
temperature from Celsius to Fahrenheit, start the name of the function with a verb
and append the necessary words each starting in uppercase (remember that the
name of a function is in one word). Examples include ConvertToFahrenheit,
CalculateArea, LoadFromFile, etc. Some functions will not include a verb. They can
simply represent a word such as Width, Index, New. They can also be a
combination of words; examples include DefaultName, BeforeConstruction, or
MethodOfAssignment. Here are examples of function names

double CalculateArea(Needs);
char Answer(Needs);

bool InTheBox(Needs);
string StudentName(Needs);

Arguments — Parameters

In order to carry its assignment, a function might be supplied something. For
example, when a function is used to calculate the area of a square, you have to
supply the side of the square, then the function will work from there. On the other
hand, a function used to get a student’s first name does not have a need; its job is
to supply or return something.

Some functions have needs and some don’'t. The needs of a function are provided
between parentheses. These needs could be as varied as possible. If a function
does not have a need, leave its parentheses empty.

* In some references, instead of leaving the parentheses
empty, the programmer would write void. In this book,
if a function does not have a need, we will leave its
parentheses empty.

Some functions will have only one need, some others will have many. A function’s
need is called an argument. If a function has a lot of needs, these are its
arguments.

“* In some documents, an argument is called a

parameter. Both word mean the same thing.

The argument is a valid variable and is defined by its data type and a name. For
example, if a function is supposed to calculate the area of a square and it is
expecting to receive the side of the square, you can declare it as

double CalculateArea(double Side);
A function used to get a student’s first name could be declared as:
string FirstName();

One of the biggest questions is to know when to supply arguments or not; if a
function will need arguments, how many will be necessary? If a function were

http://www .functionx.com/cppbeb/Lesson03.htm

17/01/2006 09:40

Lesson 03 - Introduction to Functions

3 0f27

supposed to simply request something from the user, such a function might not
need an argument. If a function is supposed to only display a message to the user,
it also might not need an argument. On the other hand, a function used to calculate
the perimeter of a rectangle would need to know the length and width of the figure.
Therefore, the length and the width would be provided as arguments. Here are
examples of declaring functions: some take arguments, some don’t:

double CalculateArea (double Side);

char Answer () ;

void Message (float Distance);

bool InTheBox (char Mine);

string StudentName () ;

double RectangleArea (double Length, double Width);

void DefaultBehavior (int Key, double Area, char MI, float Ter);

Defining Functions

In order to use a function in your program, you have to let the compiler know what
the function does; in fact, the compiler will help you make sure the function can
perform its intended assignment. Sometimes (depending on where the function is
located in your program), you will not have to declare the function before using it;
but you must always tell the compiler what behavior you are expecting.

We have seen that the syntax of declaring a function was:
ReturnType FunctionName(Needs);

To let the compiler know what the function is meant to do, you have to “define” it.
Defining a function means describing its behavior. The syntax of defining a function
is:

ReturnType FunctionName(Needs) {Body}

You define a function using the rule we applied with the main() function. Define it
starting with its return value (if none, use void), followed by the function name, its
argument (if any) between parentheses, and the body of the function. Once you
have defined a function, other functions can use it.

Function Body

As an assignment, a function has a body. The body of the function describes what
the function is supposed to do. The body starts with an opening curly bracket “{*
and ends with a closing curly bracket “}”. Everything between these two symbols
belongs to the function. From what we have learned so far, examples of functions
would be:

double CalculateArea(double Side) {};
char Answer() {};

The most used function in C++ is called main().

In the body of the function, you describe the assignment the function is supposed
to perform. As simple as it looks, a function can be used to display a message. Here
is an example:

void Message ()
{
cout << "This is C++ in its truest form.";

}

A function can also implement a complete behavior. For example, on a program
used to perform geometric shape calculations, you can use different functions to
handle specific tasks. Imagine you want to calculate the area of a square. You can

http://www.functionx.com/cppbcb/Lesson03.htm

17/01/2006 09:40

Lesson 03 - Introduction to Functions

4 of 27

define a particular function that would request the side of the square:

cout << “Enter the side of the square: “;
cin >> Side;

and let the function calculate the area using the formula Area = Side * Side. Here
is an example of such a function:

void SquareArea ()
{
double Side;

cout << "\nEnter the side of the square: ";
cin >> Side;

cout << "\nSquare characteristics:";
cout << "\nSide " << Side;
cout << "\nArea " << Side * Side;

}

To create a more and effective program, divide jobs among functions and give each
function only the necessary behavior and a specific assignment. A good program is
not proven by long and arduous functions.

+ Defining a Function

1. Create a new C++ Console Application based on the Console Wizard

2. Save the project in a folder called Functionl. Accept the suggested names of
the unit and the project.

3. Change the content of the program as follows: Here is what the Message()
function would look like in a program:

#include <iostream>
#include <conio>
using namespace std;
#pragma hdrstop

#pragma argsused
int main(int argc, char* argv[])
{

void Message();

cout << "\nPress any key to continue...";
getch () ;

return 0;

void Message ()
{
cout << "Welcome to the Red Oak High School.";

4. To test the program, press F9.
Calling Functions

One of the main reasons of using various functions in your program is to isolate
assignments; this allows you to divide the jobs among different entities so that if
something is going wrong, you might easily know where the problem is. Functions
trust each other, so much that one function does not have to know HOW the other

http://www .functionx.com/cppbeb/Lesson03.htm

17/01/2006 09:40

Lesson 03 - Introduction to Functions

function performs its assignment. One function simply needs to know what the
other function needs and supply it.

Once a function has been defined, other functions can use the result of its
assignment. Imagine you define two functions A and B.

Function & Function B

If Function A needs to use the result of Function B, function A has to use the name
of function B. This means Function A needs to “call” Function B:

Function &4 Function B

When calling one function from another function, provide neither the return value
nor the body, simply type the name of the function and its list of arguments, if any.
For example, to call a function named Welcome() from the main() function, simply
type it, like this:

int main(int argc, char* argv([])
{
Message(); // Calling the Message() function

return 0;

The compiler treats the calling of a function depending on where the function is
declared with regards to the caller. You can declare a function before calling it. Here
is an example:

#include <iostream>
#include <conio>
using namespace std;
#pragma hdrstop

#pragma argsused
void Message ()
{

cout << "This is C++ in its truest form.";

int main(int argc, char* argv([])
{

Message(); // Calling the Message() function
cout << "\n\nPress any key to continue...";
getch();
return 0;

If a function is defined after its caller, you should declare it inside of the caller first.
Here is an example:

#include <iostream>
#include <conio>
using namespace std;
#pragma hdrstop

50f27

http://www.functionx.com/cppbcb/Lesson03.htm

17/01/2006 09:40

Lesson 03 - Introduction to Functions

int main(int argc, char* argv([])
{

void Message () ;

cout << "We will start with the student registration process.\n";
Message (); // Calling the Message() function

cout << "\n\nPress any key to continue...";
getch();
return 0;

void Message ()
{
cout << "Welcome to the Red Oak High School.";

To use any of the functions that ships with the compiler, simply call it. As you know
already, we have been using the getchar() function:

int main(int argc, char* argv[])

getchar();
return O;

¥
« Calling Functions

1. From what we have learned so far, change the program as follows:

#include <iostream>
#include <conio>
using namespace std;
#pragma hdrstop

#pragma argsused
void Message ()
{
cout << "Welcome to the Red Oak High School.";

e ittt bt
int main(int argc, char* argv[])
{

Message () ;

cout << "\n\nPress any key to continue...";

getch () ;

return 0;

2. To test the program, on the main menu, click Run -> Run.
3. To return to Bcb, press any key.
4. To save the program, on the Standard toolbar, click the Save All button.

void Functions

6 of 27

http://www .functionx.com/cppbeb/Lesson03.htm

17/01/2006 09:40

Lesson 03 - Introduction to Functions

7 of 27

A function that does not return a value is declared and defined as void. Here is an
example:

void Introduction ()
{
cout << "This program is used to calculate the areas of some shapes.\n"
<< "The first shape will be a square and the second, a rectangle.\n"
<< "You will be requested to provide the dimensions and the program "
<< "will calculate the areas";

Any function could be a void type as long as you are not expecting it to return a
specific value. A void function with a more specific assignment could be used to
calculate and display the area of a square. Here is an example:

void SquareArea ()
{
double Side;

cout << "\nEnter the side of the square: ";
cin >> Side;

cout << "\nSquare characteristics:";
cout << "\nSide = " << Side;
cout << "\nArea = " << Side * Side;

When a function is of type void, it cannot be displayed as part of the cout
extractor and it cannot be assigned to a variable (since it does not return a value).
Therefore, a void function can only be called.

+ Using void Functions

1. Create a new C++ Console Application based on the Console Wizard.

2. Save the program in a new folder named Function2. Accept the suggested
names of the unit and the project.

3. Change the content of the file as follows:

#include <iostream>
#include <conio>
using namespace std;
#pragma hdrstop

#pragma argsused
void FahrenheitToCelsius ()
{

int Fahrenheit, Celsius;

cout << "Conversion from Fahrenheight to Celsius\n";
cout << "Type the temperature in Fahrenheit: ";

cin >> Fahrenheit;

Celsius = 5 * (Fahrenheit - 32) / 9;

cout << endl << Fahrenheit << "F = " << Celsius << "C";

int main(int argc, char* argv[])
FahrenheitToCelsius () ;
cout << "\n\nPress any key to continue...";

getch();
return 0;

http://www.functionx.com/cppbcb/Lesson03.htm

17/01/2006 09:40

Lesson 03 - Introduction to Functions

4. To test the program, on the main menu, press Run -> Run

Returning Values

If you declare a function that is returning anything else than void, the compiler will
need to know what value the function returns. The return value must be the same
type declared. The value is set with the return keyword.

If a function is declared as a char, make sure it returns a character (only one
character). Here is an example:

char Answer ()
{

char a;

cout << "Do you consider yourself a reliable employee (y=Yes/n=No)? ";
cin >> a;

return a;

A good function can also handle a complete assignment and only hand a valid value
to other desired functions. Imagine you want to process member’s applications at a
sports club. You can define a function that would request the first and last names;
other functions that need a member’s full name would request it from such a
function without worrying whether the name is complete. The following function is
in charge of requesting both names. It returns a full name that any desired function
can use:

string GetMemberName ()
{

string FName, LName, FullName;

cout << "New Member Registration.\n";
cout << "First Name: ";

cin >> FName;

cout << "Last Name: ";

cin >> LName;

FullName = FName + " " + LName;
return FullName;

« Techniques of Returning Values

1. To apply a basic technique of returning a value, change the content of the file as
follows:

#include <iostream>
#include <conio>
using namespace std;
#pragma hdrstop

#pragma argsused
int GetFahrenheit ()
{

int Temp;

cout << "Type the temperature in Fahrenheit: ";

8 of 27

http://www .functionx.com/cppbeb/Lesson03.htm

17/01/2006 09:40

Lesson 03 - Introduction to Functions

9 of 27

cin >> Temp;

return Temp;

main (int argc, char* argv[])

int Celsius, Fahrenheit;

cout << "This program allows you to convert a temperature "
<< "from Fahrenheit to Celsius\n";

Fahrenheit = GetFahrenheit ();

Celsius = 5 * (Fahrenheit - 32) / 9;

cout << endl << Fahrenheit << "F = " << Celsius << "
cout << "\n\nPress any key to continue...";

getch();

return 0;

2. To test the program, on the main menu, click Run -> Run.

3. After testing the program, press Enter to return to Bcb.

4. For another example, change the program as follows:

#include <iostream>
#include <conio>
using namespace std;
#pragma hdrstop

#pragma argsused

int

{

GetFahrenheit ()
int Temp;

cout << "Type the temperature in Fahrenheit: ";
cin >> Temp;

return Temp;

GetCelsius ()
int Temp;

cout << "Type the temperature in Celsius: ";

cin >> Temp;

return Temp;

main(int argc, char* argv[])

int Celsius, Fahrenheit;

cout << "This program allows you to convert a temperature "
<< "from Fahrenheit to Celsius\n";

Fahrenheit = GetFahrenheit();

Celsius = 5 * (Fahrenheit - 32) / 9;

cout << endl << Fahrenheit << "F = " << Celsius << "C";
cout << "\n\nPress any key to continue...";
getch();

return 0;

http://www.functionx.com/cppbcb/Lesson03.htm

17/01/2006 09:40

Lesson 03 - Introduction to Functions

5. To test the program, press F9.

Techniques of Passing Arguments

http://www .functionx.com/cppbeb/Lesson03.htm

In order to perform its assignment, a function may need arguments. Any function
that wants to use the result of another function must supply the other function’s

required arguments, if any.

When declaring a function that uses arguments, specify each argument with a data
type and a name. Here are examples of declaring functions that take arguments:

void SetGender(char a);
double RectangleArea(double L, double W);
char Admission(string Name, double Grade, char g);

Passing Arguments by Value

To use a function inside of another function, that is, to call a function from another
function, specify the name of the function and its list of arguments (if any) inside of
parentheses; only the name of each argument is needed. You can declare a function

like this:

float GetHours(string FullName);

To call such a function from another, you would use:
GetHours(FullName);

Here is an example:

#include <iostream>

#include <conio>

using namespace std;
#pragma hdrstop

#pragma argsused
string GetName ()
{

string FirstName, LastName, FN;

cout << "Employee's First Name: ";
cin >> FirstName;
cout << "Employee's Last Name: ";

cin >> LastName;
FN = FirstName + " " + LastName;
return FN;

int main(int argc, char* argv([])
string FullName;
double Hours;

double GetHours (string FullName) ;

FullName = GetName ();
Hours = GetHours (FullName) ;

10 of 27

cout << "\nEmployee's Name:

cout << "\nWeekly Hours: " << Hours << " hours";

" << FullName;

17/01/2006 09:40

Lesson 03 - Introduction to Functions http://www.functionx.com/cppbcb/Lesson03.htm Lesson 03 - Introduction to Functions http://www .functionx.com/cppbeb/Lesson03.htm

cout << "\n\nPress any key to continue..."; /= oo
getch();
return 0; #pragma argsused
} J et it
/e oo int main(int argc, char* argv[])
double GetHours (string FullName) {
{ double ItemPrice, TaxRate;
double Mon, Tue, Wed, Thu, Fri, TotalHours; double PurchasePrice (double ItemPrice, double TaxRate);
cout << endl << FullName << "'s Weekly Hours\n"; cout << "Enter the price of the item: ";
cout << "Monday: "; cin >> Mon; cin >> ItemPrice;
cout << "Tuesday: "; cin >> Tue; cout << "Enter the tax rate: ";
cout << "Wednesday: "; cin >> Wed; cin >> TaxRate;
cout << "Thursday: "; cin >> Thu;
cout << "Friday: "; cin >> Fri; cout << "\nThe final price is: " << PurchasePrice(ItemPrice, TaxRate);
TotalHours = Mon + Tue + Wed + Thu + Fri; cout << "\n\nPress any key to continue...";
return TotalHours; getch () ;
} return 0;
/T oo }
/= oo
Here is an example of running the program: double PurchasePrice (double ItemPrice, double TaxRate)

{

Employee's First Name: Frank double Price;

Employee's Last Name: Dassault . . .
pLoy u Price = ItemPrice + (ItemPrice * TaxRate / 100);

Frank Dassault's Weekly Hours return Price;

Monday: 8.00)
Tuesday: 8.50
Wednesday: 9.00
Thursday: 8.00 Here is an example of running the program:
Friday: 8.00
Enter the price of the item: 128.55
Employee's Name: Frank Dassault Enter the tax rate: 7.55

Weekly Hours: 41.5 hours
The final price is: 138.256
Press any key to continue...
Press any key to continue...
When declaring a function, the compiler does not require that you supply a name
for each argument, it only needs to know what type of argument(s) and how many & Passing Arguments by Value
arguments a function takes. This means the GetHours() function could have been

declared as 1. To implements an example of passing an argument to a function, change the

float GetHours(string); content of the file as follows:

Furthermore, the compiler does not care about the name you give an argument ;_/——1—;———7 ——
when declaring a function. Imagine you want to write a function that would include <iostream>

.) . . s . #include <conio>
calculate an item’s purchase price based on the item’s store price added the tax. using namespace std;

The tax rate is a percentage value. This means a tax rate set at 7.50% in C++ #pragma hdrstop
terms is equal to 0.075 (because 7.50/100 = 0.075). The tax amount collected on a
purchase is taken from an item’s price; its formula is: /T T oo ooooooooooooooooo-
TaxRate #pragma argsused
Tax Amount = Item Price * int GetFahrenheit ()
puili} {
int Temp;

The formula of calculating the final price of an item is:
cout << "Type the temperature in Fahrenheit: ";

Final Price = Item Price + Tax Amount cin >> Temp;
Here is an example: return Temp;
}
e e Jm e
#include <iostream> int main(int argc, char* argv([]
#include <conio> {
using namespace std; int Celsius, Fahrenheit;
#pragma hdrstop void FahrenheitToCelsius (int);

11 0f27 17/01/2006 09:40 12 of 27 17/01/2006 09:40

Lesson 03 - Introduction to Functions http://www.functionx.com/cppbcb/Lesson03.htm Lesson 03 - Introduction to Functions http://www .functionx.com/cppbeb/Lesson03.htm

Fahren = CelsiusToFahrenheit (Cels);
cout << "This program allows you to convert a temperature "

<< "from one type to another\n"; cout << endl << Cels << "C = " << Fahren << "F";
Fahrenheit = GetFahrenheit(); cout << "\n\nPress any key to continue...";
FahrenheitToCelsius (Fahrenheit); getch () ;
return 0;
cout << "\n\nPress any key to continue..."; }
getch(); /=
return 0; void FahrenheitToCelsius (int Fahr)
} {
S int Celsius;
void FahrenheitToCelsius (int Fahr)
{ Celsius = 5 * (Fahr - 32) / 9;
int Celsius; cout << endl << Fahr << "F = " << Celsius << "C\n\n";
}
Celsius = 5 * (Fahr - 32) / 9; /=
cout << endl << Fahr << "F = " << Celsius << "C"; int CelsiusToFahrenheit (int Cel)
} {
/e int Fahr;
2. To test the program, on the Debug toolbar, click Run ﬂ . Fahr = ((9 * Cel) / 5) + 32;
return Fahr;
3. After testing the program, return to Bcb. }
R ettt

4. To pass an argument to a function that also returns an argument, change the
following as follows: 5. To test the program, on the Debug toolbar, click Run L3

6. After testing the program, return to Bcb.

#include <iostream>
#include <conio>
using namespace std;

7. To pass two arguments to a function, change the program as follows:

#pragma hdrstop ittt ittt
#include <iostream>
B R E———————. #include <conio>
using namespace std;
#pragma argsused #pragma hdrstop
int GetFahrenheit ()
{ /= oo
int Temp;
#pragma argsused
cout << "Type the temperature in Fahrenheit: "; int GetFahrenheit (
cin >> Temp; {
int Temp;

return Temp;
} cout << "Type the temperature in Fahrenheit: ";

e e cin >> Temp;
int GetCelsius ()
{ return Temp;

int Temp; }

/= e
cout << "Type the temperature in Celsius: "; int GetCelsius(
cin >> Temp; {
int Temp;

return Temp;
} cout << "Type the temperature in Celsius: ";
B O e e —————————. cin >> Temp;
int main(int argc, char* argvl[])
{ return Temp;

int Celsius, Fahrenheit; }

void FahrenheitToCelsius (int); ittt bbbt

int CelsiusToFahrenheit (int); int main(int argc, char* argv([]

{
cout << "This program allows you to convert a temperature " int Celsius, Fahrenheit;
<< "from one type to another\n"; void FahrenheitToCelsius (int, int);
Fahrenheit = GetFahrenheit (); void CelsiusToFahrenheit (int, int)

FahrenheitToCelsius (Fahrenheit) ;
cout << "This program allows you to convert a temperature "
int Cels, Fahren; << "from one type to another\n";

Cels = GetCelsius(); Fahrenheit = GetFahrenheit();

13 of 27 17/01/2006 09:40 14 of 27 17/01/2006 09:40

Lesson 03 - Introduction to Functions

15 of 27

FahrenheitToCelsius (Fahrenheit, Celsius);

int Cels, Fahren;

Cels = GetCelsius();
CelsiusToFahrenheit (Cels, Fahren);

cout << "\n\nPress any key to continue...";
getch () ;

return 0;

/= oo
void FahrenheitToCelsius (int Fahr, int Cels)
{
Cels = 5 * (Fahr - 32) / 9;
cout << endl << Fahr << "F = " << Cels << "C\n\n";
}
A R S
void CelsiusToFahrenheit (int Cel, int Fahr)
{
Fahr = ((9 * Cel) / 5) + 32;
cout << endl << Cel << "C = " << Fahr << "F";

8. Test the program. Return to Bcb.
Passing Arguments by Reference

When you declare a variable in a program, the compiler reserves an amount of
space for that variable. If you need to use that variable somewhere in your
program, you call it and make use of its value. There are two major issues related
to a variable: its value and its location in the memory:

Location of Wariahlel
Y ariable] ¢

| Valuel |

The location of a variable in memory is referred to as its address.

If you supply the argument using its name, the compiler only makes a copy of the
argument’s value and gives it to the calling function. Although the calling function
receives the argument’s value and can use in any way, it cannot (permanently)
alter it. C++ allows a calling function to modify the value of a passed argument if
you find it necessary. If you want the calling function to modify the value of a
supplied argument and return the modified value, you should pass the argument
using its reference.

To pass an argument as a reference, when declaring the function, precede the
argument name with an ampersand “&”. You can pass one or more arguments as
reference in the program or pass all arguments as reference. The decision as to
which argument(s) should be passed by value or by reference is based on whether
or not you want the called function to modify the argument and permanently
change its value.

Here are examples of passing some arguments by reference:

void Area(double &Side); // The argument is passed by reference
bool Decision(char &Answer, int Age); // One argument is passed by reference
// All arguments are passed by reference

float Purchase(float &DiscountPrice, float &NewDiscount, char &Commission);

You add the ampersand when declaring a function and/or when defining it. When
calling the function, supply only the name of the referenced argument(s). The

http://www.functionx.com/cppbcb/Lesson03.htm

17/01/2006 09:40

Lesson 03 - Introduction to Functions

16 of 27

above would be called with:

Area(Side);
Decision(Answer, Age);
Purchase(DiscountPrice, NewDiscount, Commission);

You will usually need to know what happens to the value passed to a calling
function because the rest of the program may depend on it.

Imagine that you write a function that calculates employees weekly salary provided
the total weekly hours and hourly rate. To illustrate our point, we will see how or
whether one function can modify a salary of an employee who claims to have
worked more than the program displays. The starting regular program would be as
follows:

#include <iostream>
#include <conio>
using namespace std;
#pragma hdrstop

int main(int argc,

{

char* argv([])

float Hours, Rate, Wage;
void Earnings(float h, float r);

cout << "Enter the total Weekly hours: ";
cin >> Hours;

cout << "Enter the employee's hourly rate: ";
cin >> Rate;

cout << "\nIn the main() function,";
cout << "\n\tWeekly Hours = " << Hours;
cout << "\n\tSalary = " << Rate;

cout << "\n\tWeekly Salary: " << Hours * Rate;

cout << "\nCalling the Earnings() function";

Earnings (Hours, Rate);

cout << "\n\nAfter calling the Earnings ()
<< "in the main() function,";

function, "

cout << "\n\tWeekly Hours = " << Hours;

cout << "\n\tSalary = " << Rate;

cout << "\n\tWeekly Salary: " << Hours * Rate;
cout << "\n\nPress any key to continue...";
getch();

return 0;

/oo
void Earnings (float ThisWeek, float Salary)
{

cout << "\n\nIn the Earnings() function,";

cout << "\n\tWeekly Hours = " << ThisWeek;

cout << "\n\tSalary = " << Salary;

cout << "\n\tWeekly Salary= " << ThisWeek * Salary;

If you test the program by typing 32 for the weekly hours and 6.45 for the salary,
you would notice the weekly values are the same.

Imagine that the employee claims to have worked 42 hours instead of the passed
weekly hours. You could create the following function to find out.

http://www .functionx.com/cppbeb/Lesson03.htm

17/01/2006 09:40

Lesson 03 - Introduction to Functions http://www.functionx.com/cppbcb/Lesson03.htm Lesson 03 - Introduction to Functions http://www .functionx.com/cppbeb/Lesson03.htm

J = e e e #pragma argsused
void Earnings(float ThisWeek, float Salary) void GetFahrenheit (int& Temp)
{ {
ThisWeek = 42; cout << "Type the temperature in Fahrenheit: ";
cout << "\n\nIn the Earnings() function,"; cin >> Temp;
cout << "\n\tWeekly Hours = " << ThisWeek; }
cout << "\n\tSalary = " << Salary; e S
cout << "\n\tWeekly Salary= " << ThisWeek * Salary; void GetCelsius (int& Temp)
} {
/) m e cout << "Type the temperature in Celsius: ";
cin >> Temp;
If you test the program with a weekly hours value of 35.50 and a salary of 8.50, ;/ 777
you _vvould notice that. the V_/eekly salary is different |n3|de_ of the Earmngs() function int main(int argc, char* argv(])
but is kept the same in main(), before and after the Earnings() function: {
int Celsius, Fahrenheit;
Enter the total Weekly hours: 35.50 void FahrenheitToCelsius (int, int);
Enter the employee's hourly rate: 8.50 void CelsiusToFahrenheit (int, int);
In the main() function, cout << "This program allows you to convert a temperature "
Weekly Hours = 35.5 << "from one type to another\n";
Salary = 8.5 GetFahrenheit (Fahrenheit) ;
Weekly Salary: 301.75 FahrenheitToCelsius (Fahrenheit, Celsius);

Calling the Earnings() function
int Cels, Fahren; GetCelsius(Cels);

In the Earnings () function, CelsiusToFahrenheit (Cels, Fahren);
Weekly Hours = 42
Salary = 8.5 cout << "\n\nPress any key to continue...";
Weekly Salary= 357 getch () ;
return 0;
After calling the Earnings() function, in the main() function, }
Weekly Hours = 35.5 et e L LT
Salary = 8.5 void FahrenheitToCelsius (int Fahr, int Cels)
Weekly Salary: 301.75 {

Cels = 5 * (Fahr - 32) / 9;
Press any key to continue...
cout << endl << Fahr << "F = " << Cels << "C\n\n";
As an example of passing an argument by reference, you could modify the }

declaration of the Earnings() function inside of the main() function as follows: it
void CelsiusToFahrenheit (int Cel, int Fahr)

void Earnings(float &h, float r); !

Fahr = ((9 * Cel) / 5) + 32;
R) ; cout << endl << Cel << "C = " << Fahr << "F";

If you want a calling function to modify the value of an argument, you should }
supply its reference and not its value. You could change the function as follows: /e e e
= 2. To test the program, on the main menu, click Run 2 Run.
void Earnings(float &ThisWeek, float Salary) .
{ 3. After testing the program, return to Bcb.

ThisWeek = 42;

cout << "\n\nIn the Earnings() function,";

cout << "\n\tWeekly Hours = " << ThisWeek; Default Arguments

cout << "\n\tSalary = " << Salary;

cout << "\n\tWeekly Salary= " << ThisWeek * Salary;
} We have seen that some functions take one or more arguments. Whenever a
ettt function takes an argument, that argument is required. If the calling function does

not provide the (required) argument, the compiler would throw an error.

® Passmg Arguments by Reference Imagine you write a function that will be used to calculate the final price of an item

after discount. The function would need the discount rate in order to perform the

1. To apply the passing of an argument by reference, change the file as follows: calculation. Such a function could look like this:
/oo double CalculateNetPrice(double DiscountRate)
#include <iostream> {

#include <conio> double OrigPrice;
using namespace std;
#pragma hdrstop cout << "Please enter the original price: ";

cin >> OrigPrice;

return OrigPrice - (OrigPrice * DiscountRate / 100);

17 of 27 17/01/2006 09:40 18 of 27 17/01/2006 09:40

Lesson 03 - Introduction to Functions http://www.functionx.com/cppbcb/Lesson03.htm

Since this function expects an argument, if you do not supply it, the following
program would not compile:

#include <iostream>
#include <conio>
using namespace std;
#pragma hdrstop

#pragma argsused
double CalculateNetPrice (double DiscountRate)
{

double OrigPrice;

cout << "Please enter the original price: ";
cin >> OrigPrice;

return OrigPrice - (OrigPrice * DiscountRate / 100);
int main(int argc, char* argv([])
{

double FinalPrice;

double Discount = 15; // That is 25% = 25

FinalPrice = CalculateNetPrice (Discount);

cout << "\nAfter applying the discount";

cout << "\nFinal Price = " << FinalPrice << "\n";
cout << "\nPress any key to continue...";
getch();

return 0;

Here is an example of running the program:
Please enter the original price: 255.95

After applying the discount
Final Price = 217.558

Press any key to continue...

Most of the time, a function such as ours would use the same discount rate over
and over again. Therefore, instead of supplying an argument all the time, C++
allows you to define an argument whose value would be used whenever the
function is not provided with the argument.

To give a default value to an argument, when declaring the function, type the name
of the argument followed by the = sign, followed by the default value. The
CalculateNetPrice() function, with a default value, could be defined as:

#include <iostream>
#include <conio>
using namespace std;
#pragma hdrstop

#pragma argsused
double CalculateNetPrice (double DiscountRate = 25)

19 of 27 17/01/2006 09:40

Lesson 03 - Introduction to Functions

double OrigPrice;
cout << "Please enter the original price: ";
cin >> OrigPrice;

return OrigPrice - (OrigPrice * DiscountRate / 100);

int main(int argc, char* argv[])
double FinalPrice;
FinalPrice = CalculateNetPrice();

cout << "\nAfter applying the discount";
cout << "\nFinal Price = " << FinalPrice << "\n";

cout << "\nPress any key to continue...";
getch();
return 0;

Here is an example of running the program:
Please enter the original price: 120.15

After applying the discount
Final Price = 90.1125

Press any key to continue...

If a function takes more than one argument, you can provide a default argument
for each and select which ones would have default values. If you want all
arguments to have default values, when defining the function, type each name
followed by = followed by the desired value. Here is an example:

#include <iostream>
#include <conio>
using namespace std;
#pragma hdrstop

#pragma argsused
double CalculateNetPrice (double Tax = 5.75, double Discount = 25,
double OrigPrice = 245.55)
{
double DiscountValue = OrigPrice * Discount / 100;
double TaxValue = Tax / 100;
double NetPrice = OrigPrice - DiscountValue + TaxValue;

cout << "Original Price: $" << OrigPrice << endl;
cout << "Discount Rate: " << Discount << "§" << endl;
cout << "Tax Amount: $" << Tax << endl;
return NetPrice;

int main(int argc, char* argv([])

{
double FinalPrice;

FinalPrice = CalculateNetPrice();

cout << "\nAfter applying the discount";
cout << "\nFinal Price = " << FinalPrice << "\n";

20 of 27

http://www .functionx.com/cppbeb/Lesson03.htm

17/01/2006 09:40

Lesson 03 - Introduction to Functions

21 of 27

cout << "\nPress any key to continue...";
getch () ;
return 0;

Here is the result produced:

Original Price: $245.55
Discount Rate: 25%
Tax Amount: $5.75

After applying the discount
Final Price = 184.22

Press any key to continue...

If a function takes more than one argument and you would like to provide default
values for those parameters, the order of appearance of the arguments is very
important.

1/ If a function takes two arguments, you can declare it with default values. We
already know how to do that. If you want to provide a default value for only one of
the arguments, the argument that would have a default value must be the second
in the list. Here is an example:

double CalculatePrice(double Tax, double Discount = 25);

When calling such a function, if you supply only one argument, the compiler would
assign its value to the first parameter in the list and ignore assigning a value to the
second:

#include <iostream>
#include <conio>
using namespace std;
#pragma hdrstop

#pragma argsused
double CalculateNetPrice (double Tax, double Discount = 25)
{

double OrigPrice, DiscountValue, TaxValue, NetPrice;

cout << "Enter the original price of the item: ";
cin >> OrigPrice;

DiscountValue = OrigPrice * Discount / 100;
TaxValue = Tax / 100;

NetPrice = OrigPrice - DiscountValue + TaxValue;

return NetPrice;

int main(int argc, char* argv([])

double FinalPrice;
double TaxRate = 5.50; // = 5.50%

FinalPrice = CalculateNetPrice (TaxRate);

cout << "\nAfter applying the discount";

cout << "\nFinal Price = " << FinalPrice << "\n";
cout << "\nPress any key to continue...";
getch();

http://www.functionx.com/cppbcb/Lesson03.htm

17/01/2006 09:40

Lesson 03 - Introduction to Functions

22 of 27

return 0;

Here is an example of running the program:
Enter the original price of the item: 250.50

After applying the discount
Final Price = 187.93

Press any key to continue...

If you define the function and assign a default value to the first argument, if you
provide only one argument when calling the function, you would receive an error.

2/ If the function receives more than two arguments and you would like only some
of those arguments to have default values, the arguments that would have default
values must be at the end of the list. Regardless of how many arguments would or
would not have default values, start the list of arguments without those that would
not use default values.

+ Using Default Arguments

1. Create a new C++ Console Application based on the Console Wizard
2. Save it in a new folder named Default

3. To declare a function with one default argument, change the file as follows:

#include <iostream>
#include <conio>
using namespace std;
#pragma hdrstop

int main(int argc, char* argv[])
{
float Length, Width, Height;
float BoxArea(float 1 = 25.50, float w = 16.25, float h = 8.95);

cout << "With default values, Cube Area = " << BoxArea();
cout << "\n\nPress any key to continue...";

getch();

return 0;

float BoxArea(float Len, float Wd, float Ht)
{
float Area;

Area = Len * Wd * Ht;
return Area;

4. To test the program, press F9
Function Overloading
A C++ program involves a great deal of names that represent variables and

functions of various kinds. The compiler does not allow two entities to share a
name; for example, two variables must not have the name in the same function.

http://www .functionx.com/cppbeb/Lesson03.htm

17/01/2006 09:40

Lesson 03 - Introduction to Functions http://www.functionx.com/cppbcb/Lesson03.htm Lesson 03 - Introduction to Functions http://www .functionx.com/cppbeb/Lesson03.htm

Although two functions should have unique names in the same program, C++ on the axis considered:

allows you to use the same name for different functions of the same program

following certain rules. The ability to have various functions with the same name in T b

the same program is called function overloading. o L= =

The most important rule about function overloading is to make sure that each one] b3

of these functions has a different number or different types of arguments. For L= 3

example, you can create a function called Area() but define it to calculate the areas h

of different shapes: T T bl
Le=—

/e oo 3

#include <iostream> » hb3

#include <conio> K hc=—T;—

using namespace std;

#pragma hdrstop
To calculate the moment of inertia with regard to the X axis, change the file as
/T T S Coooooooooooooooooe follows:

#pragma argsused //==

// Area of a square #include <iostream>
float Area(float Side) #include <conio>

{)) using namespace std;
return (Side * Side); #pragma hdrstop

// Area of a rectangle
float Area(float Length, float Width)

{ 2
return (Length * Width); // Rectangle
}/ double MomentOfInertia (double b, double h)
___ (
int main(int argc, char* argv[]) return b * h * h * h / 3;
{
float s, 1, w; }/ ___
int main(int argc, char* argv([])
s = 15.25; { g g
1= 28.12; double Base, Height;
w = 10.35;
cout << "Enter the dimensions of the Rectangle\n";
cout << "The rea of the square is " << Area(s); cout << "Base: ":

cout << "\nThe area of the rectangle is " << Area(l, w); cin >> Base;

cout << "Height: ";

COEthTT "\n\nPress any key to continue..."; cin >> Height;
getc ;
return 07 cout << "\nMoment of inertia with regard to the X axis: ";

}/ cout << "I = " << MomentOfInertia (Base, Height) << "mm";
cout << "\n\nPress any key to continue...";

Here is the result of running the program: getch () ;
return 0;

The rea of the square is 232.562 }

The area of the rectangle is 291.042 //==

Press any key to continue... 3. To test the function, on the main menu, click Run -> Run. Here is an example:

R . Enter the dimensions of the Rectangle
+ Overloading Functions Base: 12.74

Height: 7.28

The moment of inertia is the ability of of a beam to resist bending. It is calculated

. - p M £ i ith he X axis: I = 1638.4
with regard to the cross section of the beam. Because it depends on the type of oment of inertia with regard to the X axis 638 48mm

section of the beam, its calculation also depends on the type of section of the Press any key to continue...
beam. In this exercise, we will review different formulas used to calculate the))
moment of inertia. Since this exercise is for demonstration purposes, you do not 4. After testing the function, return to Bcb.

need to be a Science Engineering major to understand it. 5. Here are the formulas to calculate the moment of inertia for a semi-circle:

1. Create a new Console Application using the Console Wizard.

L =0.110R4
2. Here is the formulas to calculate the moment of inertia of a rectangle depending

23 of 27 17/01/2006 09:40 24 of 27 17/01/2006 09:40

Lesson 03 - Introduction to Functions

25 of 27

Ie

I Le =Li= —
B e

A circle and thus a semi-circle requires only a radius. Since the other version of
the MomentOfinertia() function requires two argument, we can overload it by
providing only one argument, the radius. To calculate the moment of inertia
with regard to the X or base axis, overload the MomentOflnertia() function as
follows:

#include <iostream>
#include <conio>
using namespace std;
#pragma hdrstop

// Rectangle
double MomentOfInertia (double b, double h)
{

return b * h * h * h / 3;

// Semi-Circle
double MomentOfInertia (double R)
{

const double PI = 3.14159;

return R * R * R * R * PI/ 8;

int main(int argc, char* argv[])
double Base, Height, Radius;

cout << "Enter the dimensions of the Rectangle\n";

cout << "Base: ";

cin >> Base;

cout << "Height: ";

cin >> Height;

cout << "Moment of inertia with regard to the X axis: ";
cout << "I = " << MomentOfInertia(Base, Height) << "mm";
cout << "\n\nEnter the radius: ";

cin >> Radius;

cout << "Moment of inertia of a semi-circle with regard to the X axis: ;

cout << "I = " << MomentOfInertia (Radius) << "mm\n";
cout << "\n\nPress any key to continue...";

getch () ;

return 0;

6. Test the program. Here is an example:

Enter the dimensions of the Rectangle

Base: 28.55

Height: 18.75

Moment of inertia with regard to the X axis: I = 62731.9mm

Enter the radius: 22.52
Moment of inertia of a semi-circle with regard to the X axis: I = 101003mm

http://www.functionx.com/cppbcb/Lesson03.htm

17/01/2006 09:40

Lesson 03 - Introduction to Functions

Press any key to continue...

7. After testing the program, return to Bcb

8. Here are the formulas to calculate the moment of inertia of a triangle:

bl
kl]

X

>

As you can see, the rectangle and the triangle are using the same dimension
types. This means, we can provide only the same kinds of arguments, the base
and the height, to calculate the moment of inertia. In order to overload the
MomentOflnertia() function, we will add an argument that will never be used;
this argument will serve only as a “witness” to set the difference between both
versions of the function. This “witness” argument can be anything: an integer,
a character, a string, a float, etc. For our example, we will make it a simple
integer. To use the version applied to the triangle, we will provide this
argument to overload the MomentOflnertia() function. When called with only
two arguments, the rectangle version will apply.

To calculate the moment of inertia with regard to the X axis, overload the
MomentOflnertia function as follows:

bh?
12

X L=

%

#include <iostream>
#include <conio>
using namespace std;
#pragma hdrstop

#pragma argsused
//==
// Rectangle

double MomentOfInertia (double b, double h)
{

return b * h * h * h / 3;

// Semi-Circle
double MomentOfInertia(double R)
{

const double PI = 3.14159;

return R * R * R * R * PI/ 8;

// Triangle
double MomentOfInertia (double b, double h, int)
{

return b * h * h * h / 12;

int main(int argc, char* argvl[])
{
double Base = 7.74,
Height = 14.38,
Radius = 12.42;

cout << "Rectangle\n"

<< "Moment of inertia with regard to the X axis: ";

http://www .functionx.com/cppbeb/Lesson03.htm

17/01/2006 09:40

Lesson 03 - Introduction to Functions

http://www.functionx.com/cppbcb/Lesson03.htm

<< "mm\n\n";

cout << "I = " << MomentOfInertia (Base, Height)
cout << "Semi-Circle\n"

<< "Moment of inertia with regard to the X axis: ";
cout << "I = " << MomentOfInertia(Radius) << "mm\n\n";
cout << "Enter the dimensions of the triangle\n";
cout << "Base: ";

cin >> Base;

cout << "Height: ";
cin >> Height;

cout << "\nTriangle\n"

<< "Moment of inertia with regard to the X axis: ";

cout << "I = " << MomentOflInertia (Base,

cout << "\n\nPress any key to continue...";
getch () ;
return 0;

Height,

1) << "mm\n";

9. Test the program. Here is an example:

Rectangle

Moment of inertia with regard to the X axis: I =

Semi-Circle
Moment of inertia with regard to the X axis: I =

Enter the dimensions of the triangle

Base: 18.24

Height: 10.78

Triangle

Moment of inertia with regard to the X axis: I =

Press any key to continue...

10. After testing the program, return to Bcb

Copyright © 2002-2003 FunctionX,

Previous
Inc.

27 of 27

7671.78mm

9344 .28mm

1904.14mm

Next

17/01/2006 09:40

