Lesson 04 - Exploring Functions

1 of 27

http://www.functionx.com/cpy

GIVE BLOOD @

bloodsaves.com

Exploring Functions

Constant Arguments '

When a function receives an argument, it performs one of two actions with regards
to the value of the argument; it might modify the value itself or only use the
argument to modify another argument or another of its own variables. If you know
that the function is not supposed to alter the value of an argument, you should let
the compiler know. This is a safeguard that serves at least two purposes. First, the
compiler will make sure that the argument supplied stays intact; if the function
tries to modify the argument, the compiler would throw an error, letting you know
that an undesired operation took place. Second, this speeds up execution.

To let the compiler know that the value of an argument must stay constant, use the
const keyword before the data type of the argument. For example, if you declare a
function like void Area(const string Side), the Area() is not supposed to modify the
value of the Side argument. Consider a function that is supposed to calculate and
return the perimeter of a rectangle if it receives the length and the width from
another function, namely main(). Here is a program that would satisfy the
operation (notice the Perimeter() function that takes two arguments):

#include <iostream.h>
#pragma hdrstop

float Perimeter (float 1, float w)
{
double p;

p=2*(1*w;
return p;

int main(int argc, char* argv[])
{
float Length, Width;

cout << "Rectangle dimensions.\n";

cout << "Enter the length: ";

cin >> Length;

cout << "Enter the width: ";

cin >> Width;

cout << "\nThe perimeter of the rectangle is: "
<< Perimeter (Length, Width);

cout << "\n\nPress any key to continue...";
getchar () ;
return 0;

This would produce:

Rectangle dimensions.
Enter the length: 35.55
Enter the width: 28.75

Lesson 04 - Exploring Functions

2 0f 27

The perimeter of the rectangle is: 2044.12

Press any key to continue...

As you can see, the Perimeter() function does not change the values of the length
or the width. To reinforce the purpose of the assignment, you should make this
clear to the compiler. To make the length and the width arguments constant, you
would change the declaration of the Perimeter() function as follows:

float Perimeter(const float I, const float w);

You can make just one or more arguments constants, and there is no order on
which arguments can be made constant.

+ Using Constant Arguments

1. Start Borland C++ Builder and create a new C++ Console Application using the
Console Wizard.

2. To apply the constantness of arguments passed to functions, change the
program as follows:

#include <iostream.h>
#pragma hdrstop

// Rectangle
double MomentOfInertia (const double b, const double h)
{

return b * h * h * h / 3;

// Semi-Circle
double MomentOfInertia(const double R)
{

const double PI = 3.14159;

return R * R * R * R * PI/ 8;

// Triangle
double MomentOfInertia (const double b, const double h, int)

return b * h * h * h / 12;

int main(int argc, char* argv[])
{
double Base = 7.74,
Height = 14.38,
Radius = 12.42;

cout << "Rectangle\n"
<< "Moment of inertia with regard to the X axis: ";
cout << "I = " << MomentOfInertia(Base, Height) << "mm\n\n";

cout << "Semi-Circle\n"
<< "Moment of inertia with regard to the X axis: ";
cout << "I = " << MomentOfInertia(Radius) << "mm\n\n";

cout << "\nTriangle\n"
<< "Moment of inertia with regard to the X axis: ";
cout << "I = " << MomentOflInertia(Base, Height, 1) << "mm\n";

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

3 0f27

http://www.functionx.com/cppbcb/Lesson04.htm

cout << "\n\nPress any key to continue...";
getchar () ;
return 0;

3. To test the program, on the main menu, click Run -> Run:

Rectangle
Moment of inertia with regard to the X axis: I = 7671.78mm

Semi-Circle
Moment of inertia with regard to the X axis: I = 9344.28mm

Triangle
Moment of inertia with regard to the X axis: I = 1917.95mm

Press any key to continue...

4. To use a mix of functions, change the program as follows:

#include <iostream.h>
#pragma hdrstop

// Rectangle
double MomentOfInertia (const double b, const double h)
{

return b * h * h * h / 3;

// Semi-Circle
double MomentOfInertia(const double R)
{

const double PI = 3.14159;

return R * R * R * R * PI/ 8;

}
//=
// Triangle

double MomentOfInertia(const double b, const double h, int)
{

return b * h * h * h / 12;

int main(int argc, char* argv([])
{
double Length, Height, Radius;
double GetBase();
double GetHeight();
double GetRadius();

cout << "Enter the dimensions of the rectangle\n";
Length = GetBase();
Height = GetHeight();
cout << "Rectangle\n"
<< "Moment of inertia with regard to the X axis: ";
cout << "I = " << MomentOfInertia(Length, Height) << "mm\n\n";

cout << "Enter the radius of the semi-circle\n";
Radius = GetRadius();
cout << "Semi-Circle\n"
<< "Moment of inertia with regard to the X axis: ";

17/01/2006 09:40

Lesson 04 - Exploring Functions

http://www.functionx.com/cppbcb/Lesson04.htm

cout << "I = " << MomentOfInertia(Radius) << "mm\n\n";

cout << "Enter the dimensions of the triangle\n";
Length = GetBase();
Height = GetHeight ();

cout << "\nTriangle\n"

<< "Moment of inertia with regard to the X axis: ";
cout << "I = " << MomentOfInertia(Length, Height, 1) << "mm\n";
cout << "\nPress any key to continue...";
getchar () ;
return 0;

double GetBase ()
{
double B;

cout << "Enter Base: ";

cin >> B;

return B;

double GetHeight ()
{
double H;

cout << "Enter Height: ";
cin >> H;
return H;

double GetRadius ()
{
double R;

cout << "Enter Radius: ";
cin >> R;
return R;

5. Test the program. Here is an example:

Enter the dimensions of the rectangle

Enter Base: 18.25

Enter Height: 14.15

Rectangle

Moment of inertia with regard to the X axis: I = 17235mm

Enter the radius of the semi-circle

Enter Radius: 15.55

Semi-Circle

Moment of inertia with regard to the X axis: I = 22960.5mm
Enter the dimensions of the triangle

Enter Base: 16.35

Enter Height: 12.75

Triangle
Moment of inertia with regard to the X axis: I = 2824.02mm

Press any key to continue...

6. After examining the program, return to Bcb.

Passing Arguments by Constant Reference

17/01/2006 09:40

Lesson 04 - Exploring Functions

We have seen that passing an argument as a reference allows the compiler to
retrieve the real value of the argument at its location rather than sending a request
for a copy of the variable. This speeds up the execution of the program. Also, when
passing an argument as a constant, the compiler will make sure that the value of
the passed argument is not modified. What would happen if you combine both
techniques?

If you pass an argument as reference, the compiler would access the argument
from its location. The called function can modify the value of the argument. The
advantage is that the code execution is faster because the argument gives access
to its address. The disadvantage could be that if the calling function modifies the
value of the argument, when the function exits, the value of the argument would
have (permanently) changed and the original value would be lost (actually, this can
be an advantage as we have learned in the passed). If you do not want the value of
the passed argument to be modified, you should pass the argument as a constant
reference. When doing this, the compiler would access the argument at its location
(or address) but it would make sure that the value of the argument stays intact.

To pass an argument as a constant reference, when declaring the function and
when implementing it, type the const keyword, followed by the argument data
type, followed by the ampersand operator, followed by a name for the argument.
When declaring the function, the name of the argument is optional. Here is a
function that receives an argument as a constant reference:

double CalculateNetPrice (const double& Tax)

{
double Original;
const double Discount = 25;

Original = GetOriginalPrice();

double DiscountValue = Original * Discount / 100;
double TaxValue = Tax / 100;

double NetPrice = Original - DiscountValue + TaxValue;

return NetPrice;

You can mix arguments passed by value, those passed as reference, those passed
by constant, and those passed by constant references. You will decide, based on
your intentions, to apply whatever technique suits your scenario.

The following program illustrates the use of various techniques of passing
arguments:

#include <iostream.h>
#pragma hdrstop

#include <iostream.h>
#pragma hdrstop

#pragma argsused
e R
// Passing an argument by reference
void GetOriginalPrice (double& OriginalPrice)
{

cout << "Enter the original price of the item: $";

cin >> OriginalPrice;

50f27

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

// Passing an argument as a constant reference
// Passing arguments by value
double CalculateNetPrice (const double& Original, double Tax, double Discount)
{
Discount = Original * Discount / 100;
Tax = Tax / 100;
double NetPrice = Original - Discount + Tax;

return NetPrice;

int main(int argc, char* argv[])

double TaxRate = 5.50; // = 5.50%

const double Discount = 25;

double Price;

double Original;

void Receipt (const double& Orig, const double& Taxation,
const double& Dis, const double& Final);

GetOriginalPrice (Original);
Price = CalculateNetPrice (Original, TaxRate, Discount);
Receipt (Original, TaxRate, Discount, Price);

cout << "\n\nPress any key to continue...";
getchar () ;
getchar () ;
return 0;

void Receipt (const double& Original, const double& Tax,
const double& Discount, const double& FinalPrice)

{

cout << "\nReceipt";

cout << "\nOriginal Price: $" << Original;

cout << "\nTax Rate: " << Tax << "%";

cout << "\nDiscount Rate: " << Discount << "%";

cout << "\nFinal Price: $" << FinalPrice;

+ Passing Arguments by Constant References

1. To illustrate the passing of arguments by reference and by constant references,
change the program as follows:

#include <iostream.h>
#pragma hdrstop

// Rectangle
double MomentOfInertia (const double& b, const double& h)
{

return b * h * h * h / 3;

// Semi-Circle
double MomentOfInertia(const double& R)
{

const double PI = 3.14159;

return R * R * R * R * PI/ 8;

6 of 27

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

// Triangle
double MomentOfInertia (const double& b, const double& h, const inté&)
{

return b * h * h * h / 12;

int main(int argc, char* argvl[])

{
double Length, Height, Radius;
void GetBaseAndHeight (double&, double&);
void GetRadius (doubles&);

cout << "Enter the dimensions of the rectangle\n";
GetBaseAndHeight (Length, Height);
cout << "Rectangle\n"
<< "Moment of inertia with regard to the X axis: ";
cout << "I = " << MomentOfInertia(Length, Height) << "mm\n\n";

cout << "Enter the radius of the semi-circle\n";
GetRadius (Radius) ;
cout << "Semi-Circle\n"

<< "Moment of inertia with regard to the X axis: ";
cout << "I = " << MomentOfInertia(Radius) << "mm\n\n";

cout << "Enter the dimensions of the triangle\n";
GetBaseAndHeight (Length, Height);

cout << "\nTriangle\n"

<< "Moment of inertia with regard to the X axis: ";
cout << "I = " << MomentOfInertia (Length, Height, 1) << "mm\n";
cout << "\n\nPress any key to continue...";
getchar () ;

return 0;

// Passing arguments by reference
void GetBaseAndHeight (double& B, double& H)
{

cout << "Enter Base: "y
cin >> B;
cout << "Enter Height: ";
cin >> H;

void GetRadius (double& R)

{
cout << "Enter Radius: ";
cin >> R;

2. To test the program, on the Debug toolbar, click the Run button. Here is an
example:

Enter the dimensions of the rectangle

Enter Base: 18.85
Enter Height: 15.55
Rectangle

Moment of inertia with regard to the X axis: I = 23625.5mm

Enter the radius of the semi-circle

Enter Radius: 14.25

Semi-Circle

Moment of inertia with regard to the X axis: I = 16192.7mm

Enter the dimensions of the triangle

Enter Base: 8.95
Enter Height: 11.25

7 of 27

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

Triangle
Moment of inertia with regard to the X axis: I = 1061.94mm

Press any key to continue...

3. After testing the program, return to Bcb.
4. To further mix the passing of arguments, change the program as follows:

#include <iostream.h>
#pragma hdrstop

#pragma argsused
//
// Rectangle
// This function receives one argument by reference and two arguments
// by constant references
void MomentOfInertia (double& Moment,
const double& b, const double& h)

{

Moment = b * h * h * h / 3;

// Semi-Circle
// This function receives one argument by reference and one by
// constant reference
void MomentOfInertia(double& Moment, const double& R)
{
const double PI = 3.14159;

Moment = R * R * R * R * PI/ 8;

// Triangle
// This function receives one argument by reference, two arguments by
// constant references and one argument by value
void MomentOfInertia (double& Moment,
const double& b, const double& h, const int&)
{
Moment = b * h * h * h / 12;

int main(int argc, char* argvl[])

{
double Length, Height, Radius, MRectangle, MSemiCircle, MTriangle;
void GetBaseAndHeight (double&, double);
void GetRadius (doubleé&);

cout << "Enter the dimensions of the rectangle\n";
GetBaseAndHeight (Length, Height);
MomentOfInertia (MRectangle, Length, Height);
cout << "Rectangle\n"

<< "Moment of inertia with regard to the X axis: ";
cout << "I = " << MRectangle << "mm\n\n";
cout << "Enter the radius of the semi-circle\n";

GetRadius (Radius) ;
MomentOfInertia (MSemiCircle, Radius);
cout << "Semi-Circle\n"
<< "Moment of inertia with regard to the X axis: ";
cout << "I = " << MSemiCircle << "mm\n\n";
cout << "Enter the dimensions of the triangle\n";

GetBaseAndHeight (Length, Height);
MomentOfInertia (MRectangle, Length, Height, 1);
cout << "\nTriangle\n"
<< "Moment of inertia with regard to the X axis: ";

8 of 27

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

9 of 27

cout << "I = " << MRectangle << "mm\n";
cout << "\n\nPress any key to continue...";
getchar () ;

return 0;

// Passing arguments by reference
void GetBaseAndHeight (double& B, double& H)
{

cout << "Enter Base: ";

cin >> B;

cout << "Enter Height: ";

cin >> H;

void GetRadius (double& R)

{
cout << "Enter Radius: ";
cin >> R;

5. Test the program. Here is an example:

Enter the dimensions of the rectangle

Enter Base: 12.85

Enter Height: 8.85

Rectangle

Moment of inertia with regard to the X axis: I = 2969.01lmm
Enter the radius of the semi-circle

Radius: 5.55

Semi-Circle

Moment of inertia with regard to the X axis:

I = 372.5%mm

Enter the dimensions of the triangle
Enter Base: 10.75
Enter Height: 6.75

Triangle
Moment of inertia with regard to the X axis: I = 275.511lmm

Press any key to continue...

6. Return to Bcb.
Passing Arguments to Registers

All the variables that we have used so far were declared in, and passed to, the
random memory (RAM). Once a variable is declared and “put” in the memory,
whenever it is involved in a calculation or assignment, the microprocessor sends a
request to the memory to retrieve the value of the variable.

The Central Processing Unit (CPU), also called the microprocessor, has its own
memory. The microprocessor is made of memory cells called registers. Unlike the
memory in the RAM, the access of the memory in the microprocessor is more
precise; so precise that the registers are referred to by using their names. Some of
the most commonly used registers (also called general purpose registers) are called
EAX, EBX, ECX, EDX, ESI, etc. These registers are mostly used in the Assembly
Language for low-level programming. Using registers allows the programmer to
write assignments directly destined for the microprocessor. The assignments and
operations in the Assembly language are called instructions. When instructions are
used by registers, the processing of the program is fast because the microprocessor
does not have to retrieve the values of the variables in the RAM; these values, since
existing in the registers, are readily available.

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

10 of 27

C++ Builder (and most popular compilers) allow you to include Assembly Language
code in your program. Using this feature, you can write a section or sections of
Assembly language. A section that has Assembly code starts with __asm followed
by some other techniques. When the compiler encounters this keyword, it knows
that the subsequent code would be in Assembly language and it would treat it
accordingly. For example, instead of performing a calculation in the RAM, the
following program will assign values to two integer variables, namely Numberl and
Number2, then it calculate their sum of those two numbers and stores the result in
another variable called Result. After the calculation the Assembly section sends the
result back to the C++ compiler to display the variables and their values:

#include <iostream.h>
#pragma hdrstop

#pragma argsused
int main(int argc, char* argv([])
{

int Numberl, Number2, Result;

asm

-

MOV Numberl, 248 // Initialize Numberl

MOV Number2, 405 // Initialize Number2

MOV EAX, Numberl // Put the value of Numberl in the EAX register
ADD EAX, Number2 // Add the value of Number2 to the content of EAX
MOV Result, EAX // Put the content of EAX into Result

} // That's it

cout << "Numberl = " << Numberl << endl;

cout << "Number2 = " << Number2 << endl;

cout << "\nAfter adding Numberl to Number2," << endl;
cout << "Result = " << Result << endl;

cout << "\nPress any key to continue...";
getchar () ;
return 0;

This would produce:

Numberl = 248
Number2 = 405

After adding Numberl to Number2,
Result = 65

Press any key to continue...

C++ Builder ships with a version of Assembly language so that if you are interested
in adding low-level code, you do not have to purchase an assembler. In fact, C++
installs TASM (known as Turbo Assembler), the award wining Assembler from
Borland. This means that, if you want to learn Assembly, you don't have to
purchase it anymore (unfortunately, it is not documented). Alternatively, the C++
Builder compiler has its own Assembler known as Inline Assembly. This allows you
to embed Assembly code in your programs.

The ability for C++ Builder to recognize Assembly code allows you to pass
arguments to registers. For example, you can pass arguments to the EAX, EBX,
ECX, or EDX, etc register to speed the compilation process. Fortunately, you do not
need to learn Assembly language (although you are encouraged to do so) to speed
your code in C++ Builder. As an alternative, you can use the __ fastcall keyword

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

whenever you would have passed arguments in registers.
The syntax for using the __ fastcall keyword is:
ReturnType __ fastcall FunctionName(Arguments);

Whenever you decide to use __ fastcall, use it both when declaring and when
defining the function. As an introductory example of using __ fastcall, the following
program uses two functions. The first function, GetFullName() requests an
employee’s first and last names, then it returns the full name. Since this function is
defined before being used, it was not declared in the main() function. The second
function, because defined after main() (I did this on purpose), is declared in main()
prior to using it. Both functions use the _ fastcall keyword. Notice that both
functions have their arguments also passed by reference. Here is the complete
program:

#include <iostream.h>
#pragma hdrstop

#include <iostream.h>
#pragma hdrstop

string __ fastcall GetFullName(string fn, string 1ln)

{
string FN;

cout << "First Name: ";

cin >> fn;

cout << "Last Name: ";

cin >> 1ln; FN = fn + " " + 1n;

return FN;

int main(int argc, char* argv[])

string FirstName, LastName, FullName;
double Hours, HourlySalary, WeeklySalary;
void _ fastcall GetHours (double& x, double& y);

cout << "Enter information about the employee\n";
FullName = GetFullName (FirstName, LastName);
GetHours (Hours, HourlySalary);

WeeklySalary = Hours * HourlySalary;

cout << "\nEmployee's Records";

cout << "\nFull Name: " << FullName;

cout << "\nWeekly Hours: " << Hours;

cout << "\nHourly Salary: $" << HourlySalary;
cout << "\nWeekly Wages: $" << WeeklySalary;

cout << "\n\nPress any key to continue...";
getchar () ;
return 0;

void _ fastcall GetHours (double& h, double& s)
{

cout << "Total hours for the week: ";

cin >> h;

cout << "Hourly Salary: s$";

cin >> s;

11 0f27

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

12 of 27

Here is an example of running the program:

Enter information about the employee
First Name: Henry

Last Name: Ndjakou

Total hours for the week: 35.50
Hourly Salary: $12.55

Employee's Records

Full Name: Henry Ndjakou

Weekly Hours: 35.5

Hourly Salary: $12.55

Weekly Wages: $445.525

Press any key to continue...
7 Using __fastcall

1. To use __fastcall, change the program as follows:

#include <iostream.h>
#pragma hdrstop

// Rectangle
// This function receives one argument by reference and two arguments
// by constant references
void __ fastcall MomentOfInertia(double& Moment,
const double& b, const double& h)

{
Moment = b * h * h * h / 3;

// Semi-Circle
// This function receives one argument by reference and one by
// constant reference
void __fastcall MomentOfInertia(double& Moment, const double& R)
{

const double PI = 3.14159;

Moment = R * R * R * R * PI/ 8;

// Triangle
// This function receives one argument by reference, two arguments by
// constant references and one argument by value
void __ fastcall MomentOflInertia(double& Moment,
const double& b, const double& h, const inté&)
{
Moment = b * h * h * h / 12;

int main(int argc, char* argv[])

{
double Length, Height, Radius, MRectangle, MSemiCircle, MTriangle;
void __ fastcall GetBaseAndHeight (double&, doubles);
void __fastcall GetRadius (doubles) ;

cout << "Enter the dimensions of the rectangle\n";
GetBaseAndHeight (Length, Height);
MomentOfInertia (MRectangle, Length, Height);

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

13 of 27

cout <<

<<
cout <<
cout <<

"Rectangle\n"
"Moment of inertia with regard to the X axis:
"I = " << MRectangle << "mm\n\n";

"Enter the radius of the semi-circle\n";

GetRadius (Radius) ;
MomentOfInertia (MSemiCircle, Radius);

cout <<

<<
cout <<
cout <<

"Semi-Circle\n"

"Moment of inertia with regard to the X axis:
"I = " << MSemiCircle << "mm\n\n";

"Enter the dimensions of the triangle\n";

GetBaseAndHeight (Length, Height);
MomentOfInertia (MRectangle, Length, Height, 1);

cout << "\nTriangle\n"

<< "Moment of inertia with regard to the X axis:
cout << "I = " << MRectangle << "mm\n";
cout << "\n\nPress any key to continue...";
getchar () ;

return 0;

// Passing arguments by reference
void __ fastcall GetBaseAndHeight (double& B, double& H)

{

cout << "Enter Base: ";
cin >> B;
cout << "Enter Height: ";

cin >> H;

cout <<

"Enter Radius: ";

cin >> R;

2. Test the program and return to Bcb.

Inline Functions

When you call a function B() from function A(), function A() sends a request and
must get to Function B(). This is sometimes cumbersome for long functions.
Whenever your program includes a small function, C++ allows you to include such
a function where it is being called. When function B() calls function A(), instead of
sending a request to function A(), the compiler would include a copy of function A()
into function B() where it is being called. Such a function (function A()) is qualified

inline.

To create a function as inline, use the inline keyword when declaring the function
as well as when defining it. Here is an example that makes use of an inline

function:

#include <iostream.h>

#pragma hdrstop

#pragma argsused

inline void Area(float Side)

{

cout << "The area of the square is " << Side * Side;

int main(int argc, char* argv([])

{
float s;

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

14 of 27

cout << "Enter the side of the square: ";
cin >> s;
Area(s);

cout << "\n\nPress any key continue...";
getchar ()
getchar ()
return 0;

http://www.functionx.com/cppbcb/Lesson04.htm

Here is an example of running the program:

Enter the side of the square: 14.55
The area of the square is 211.702

Press any key continue...

You can also use the __ fastcall keyword on an inline function. To declare a
function as inline and __ fastcall, type both words at the beginning of the
declaration. The following program requests the hourly salary from the user. Then it
calculates the periodic earnings. The functions have been declared and defined as

inline using the __ fastcall technique:

#include <iostream.h>
#pragma hdrstop

#pragma argsused

void inline _ fastcall RequestSalary(double& h);
inline double _ fastcall Daily(double h);

double inline __ fastcall Weekly(double h);
inline double _ fastcall BiWeekly(double h);
double inline _ fastcall Monthly(double h);
double inline _ fastcall Yearly(double h);

int main(int argc, char* argv([])
{
double HourlySalary;

cout << "This program allows you to evaluate your salary "

<< "for different periods\n";

RequestSalary (HourlySalary);

cout << "\nBased on the hourly rate you supplied, here are your

<< "periodic earnings";

cout << "\n\tHourly: $" << HourlySalary;

cout << "\n\tDaily: $" << Daily(HourlySalary);
cout << "\n\tWeekly: $" << Weekly (HourlySalary);
cout << "\n\tBi-Weekly: $" << BiWeekly (HourlySalary);
cout << "\n\tMonthly: $" << Monthly (HourlySalary) ;
cout << "\n\tYearly: $" << Yearly (HourlySalary);
cout << "\n\nPress any key continue...";

getchar () ;

getchar () ;

return 0;

}
//==
void inline __ fastcall RequestSalary(double& x)
{

cout << "Enter your hourly salary: $";

cin >> x;

inline double _ fastcall Daily(double x)
{

17/01/2006 09:40

Lesson 04 - Exploring Functions

return x * 8;

double inline _ fastcall Weekly(double x)
{

return Daily(x) * 5;

inline double _ fastcall BiWeekly(double x)
{
return Weekly(x) * 2;

double inline _ fastcall Monthly(double x)
{
return Weekly(x) * 4;

double inline _ fastcall Yearly(double h)
{
return Monthly(h) * 12;

Here is an example of running the program:

This program allows you to evaluate your salary for different periods
Enter your hourly salary: $15.55

Based on the hourly rate you supplied, here are your periodic earnings

Hourly: $15.55
Daily: $124.4
Weekly: $622

Bi-Weekly: $1244
Monthly: $2488
Yearly: $29856

Press any key continue...

T Using inline Functions

1. To use inline function in our application, change the MomentOflInertia()
functions as follows:

// Rectangle
// This function receives one argument by reference and two arguments
// by constant references
void inline _ fastcall MomentOfInertia(double& Moment,
const double& b, const double& h)
{
Moment = b * h * h * h / 3;

// Semi-Circle
// This function receives one argument by reference and one by
// constant reference
void inline _ fastcall MomentOfInertia(double& Moment, const double& R)
{
const double PI = 3.14159;

Moment = R * R * R * R * PI/ 8;
// Triangle
// This function receives one argument by reference, two arguments by

// constant references and one argument by value
void inline _ fastcall MomentOfInertia(double& Moment,

15 of 27

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

const double& b, const double& h, const inté&)

Moment = b * h * h * h / 12;

2. Test the program:

Enter the dimensions of the rectangle

Enter Base: 12.12
Enter Height: 12.12
Rectangle

Moment of inertia with regard to the X axis: I = 7192.65mm
Enter the radius of the semi-circle

Enter Radius: 12.12

Semi-Circle

Moment of inertia with regard to the X axis: I = 8473.64mm
Enter the dimensions of the triangle

Enter Base: 12.12

Enter Height: 12.12

Triangle

Moment of inertia with regard to the X axis: I = 1798.16mm

Press any key to continue...

3. Return to Bcb
Static Variables

Consider the following program:

#include <iostream.h>
#pragma hdrstop

double a = 112.50;
double b = 175.25;

a=a/y;

b=Db+ 2;

cout << "y = " << y << endl;

cout << "a = " << a << endl;

cout << "b = " << b << endl;

cout << "b / a = " << b / a << "\n\n";

}

//==
int main(int argc, char* argvl[])
{

Starter(2);

Starter (2);

Starter(2);

Starter(2);

cout << "Press any key continue...";
getchar () ;
return 0;

When executed, this program would produce:

16 of 27

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

17 of 27

[eaNeoaRvILS [N LS oo oK
I |

[eaN RN ILS
|

Press any key continue...

The Starter() function receives one argument passed when it is called. The called
function also receives the same argument everytime. Looking at the result, the
argument passed to the function and the local variables declared inside of the
called function keep the same value everytime the function is called. That is, when
the Starter() function is exited, the values remain the same.

We know that, when a function is defined, any variable declared locally belongs to
the function and its influence cannot expand beyond the presence of the function.
If you want a locally declared variable to keep its changed value when its host
function is exited, declare such a variable as static.

To declare a static variable, type the keyword static on the left of the variable’s
data type. For example, if you plan to declare a Radius variable as static in an
Area() function, you could write:

double _ fastcall Area()
{

static double Radius;

You should always initialize a static variable before using it; that is, when declaring
it. To make the local variables of our Starter() function static, we can declare them
as follows:

void _ fastcall Starter(int y)
{
static double a = 112.50;
static double b = 175.25;

a=a/vy;

b=Db+ 2;

cout << "y = " << y << endl;

cout << "a = " << a << endl;

cout << "b = " << b << endl;

cout << "b / a = " << b / a << "\n\n";

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

18 of 27

a = 56.25

b =177.25

b / a= 3.15111
y =2

a = 28.125

b = 179.25

b/ a=6.37333
y =2

a = 14.0625

b = 181.25

b/ a=12.8889
y =2

a = 7.03125

b = 183.25

b/ a=26.0622
Press any key continue...

Notice that, this time, each local variable keeps its newly changed value when the
function exits. Since a function’s argument can receive different values as the
function is called different times, we can test our program by passing different
values to its argument as follows:

#include <iostream.h>
#pragma hdrstop

static double a = 112.50;
static double b = 175.25;

a=a/y;

b=Db+ 2;

cout << "y = " << y << endl;

cout << "a = " << a << endl;

cout << "b = " << b << endl;

cout << "b / a = " << b / a << "\n\n";

e S
int main(int argc, char* argv[])
{

Starter (2);

Starter(5);

Starter (14);

Starter (25) ;

cout << "Press any key continue...";
getchar () ;
return 0;

The current version of the program would produce:

y =2

a = 56.25

b =177.25

b / a= 3.15111
y =5

a = 11.25

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

19 of 27

b = 179.25

b / a=15.9333
y = 14

a = 0.803571

b = 181.25

b / a = 225.556
y = 25

a = 0.0321429

b = 183.25

b/ a=5701.11

Press any key continue...

Creating Files

When writing a program, the main reason for using functions is to isolate
assignments. This allows you to effectively troobleshoot problems when they arise.
For example, if you are asked to write a program that would process orders at a
department store, you can write one long main() function that would process all
requests and orders. When the store is having a sale and you need to apply a
discount to the program, you would spend time looking for the sections that would
use the discount and calculate the price. If you use functions to isolate
assignments, you can easily find out which particular function deals with discount;
all you would have to do is change the discount value without having to read the
whole program.

When using functions in a program, we found out that the order of declaring
functions was important. For example, you cannot call a function that has not been
declared yet. For this reason, whenever you need to call a function, you should find
out where and whether it has been declared already. If the program is using many
functions, it would become coumbersome to start looking for functions, although
the Class Explorer can help you. At the same time, on a large program, it is usual
for many functions to use the same kind of variable. Although you can locally
declare the same variable needed by a function, if these functions of the same
program would need to exchange values among them, you should declare some
variables globally, usually on top of the file, then make such a variable available to
any function that needs it.

To make these functions and variables easily manageable, you can create one file
where you would list the functions and variables used in a program. Such a file is
called a header file and it has the .h extension. By default, a newly created header
file is called Filel.h. If you create additional header files, they would have
incremental names such as File2.h, File3.h, etc. If you want to change the name of
a header file, you must save it and rename it.

To create a header file, from the New property page of the New Items dialog box,
select the Header File icon and declare the variables and functions. Here is an
example of a header file:

void RequestItemName (char Name[40]);

void RequestOrigPrice (double& Original);

void RequestDiscountRate (double& Discount);

void RequestTaxRate (double& Tax);

void CalcDiscount (double Price, double Discount);
void CalcTaxAmount (double Price, double Tax);
void CalcNetPrice (double Orig, double DiscAmt,
void ProcessTheOrder () ;

void ShowReceipt () ;

double TaxAmt) ;

After creating the header file, you can create another file to define them. The file
used to implement the functions of the header file is called the Source File and it
has a .cpp extension. By default, the first source file is called Filel.cpp. If you

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

20 of 27

create additional files, they would have incremental names such as File2.cpp,
File3.cpp, etc. If you want to change a source file name, you must save it and
rename it.

To create a source file, from the New property page of the New Items dialog box,
select the Cpp File icon and implement the functions.

When implementing the functions declared in a header file, you must provide the
name(s) of the header file(s) where the function(s) is(are) declared. For example, if
a function declared as void ReviewApplication() is in a header file called
Membership.h, to use such a function, you must type #include “Membership.h” on
top of the source file. Here is the source file of the functions declared above:

#include <iostream.h>
#include <stdio.h>

// Used to request a string from the user
#include "Filel.h"
char ItemName[40];
double OriginalPrice;
double DiscountRate;
double DiscountAmount;
double TaxRate;

double TaxAmount;
double NetPrice;

/==
void _ fastcall RequestItemName (char Name[])
{

cout << " - K & J Department Store -\n” << “Enter the items name: ";

gets (Name) ;
}
/==
void _ fastcall RequestOrigPrice (double& o)
{

cout << "Enter the original price: $";

cin >> o;
}
ettt
void _ fastcall RequestDiscountRate (double& d)
{

cout << "Enter discount rate: ";

cin >> d;
}
/1 -- --

void _ fastcall RequestTaxRate (double& t)
{

cout << "Enter the tax rate: ";

cin >> t;

DiscountAmount = Price * DiscountRate / 100;

NetPrice = Price - Discount + Tax;

RequestItemName (ItemName) ;
RequestOrigPrice (OriginalPrice);

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

RequestDiscountRate (DiscountRate) ;

RequestTaxRate (TaxRate) ;

CalcDiscount (OriginalPrice, DiscountAmount);
CalcTaxAmount (OriginalPrice, TaxAmount) ;

CalcNetPrice (OriginalPrice, DiscountAmount, TaxAmount);

void _ fastcall ShowReceipt ()

{
cout << "\nItem Name: " << ItemName;
cout << "\nOriginal Price: $" << OriginalPrice;
cout << "\nDiscount Amount: $" << DiscountAmount;
cout << "\nTax Amount: $" << TaxAmount;
cout << "\nNet Price: $" << NetPrice;

With the functions declared and defined, you can call them from any section of the
program, as long as you include the header file; you do not need to include the
source file. The header file contains all the information the calling functions need.
Here is the main() function calling the functions defined in the header file above:

T
int main(int argc, char* argv([])
{

ProcessTheOrder () ;

ShowReceipt () ;

cout << "\n\nPress any key to continue...";
getchar () ;
return 0;

Here is a result of running the program:

Enter the items name: Len Gouland Suit
Enter the original price: $540.55
Enter discount rate: 40

Enter the tax rate: 7.55

Item Name: Len Gouland Suit
Original Price: $540.55
Discount Amount: $216.22
Tax Amount: $40.8115

Net Price: $365.142

Press any key to continue...

To make sure that the header file has not been created anywhere in the program,
you should ask the compiler to check it. This is done using the #ifndef preprocessor
followed by a one-word name for the file. Once the compiler has made sure that the
header file is unique, you can ask the compiler to define it. At the end of the file
(that is, when the components of the file have been declared), signal the closing of
the file with the #endif preprocessor.

The variables that we used to perform our calculations were declared in the source
file (Filel.cpp). The processing of the order is defined by the header file. For this
reason, the variables declared in the source would not be accessible to any function
outside of the Filel.cpp even if the calling file includes the Filel.h. For example, the
following implementation of the main() function would cause an error because the
main() function is trying to call the OriginalPrice variable which is declare in the
source file:

int main(int argc, char* argv([])

21 of 27

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

22 of 27

ProcessTheOrder () ;
ShowReceipt () ;

cout << "\nOriginal Price: " << OriginalPrice;
cout << "\n\nPress any key to continue...";
getchar () ;
return 0;

The error would display as follows:
[C++ Error] Unitl.cpp(93): E2451 Undefined symbol 'OriginalPrice’

To make the variables of the previous header file accessible to any function that
would include the Filel.h header file, you must declare the variables in the header
file. If you declare these variables using the same syntax of the source file, the
compiler would throw a warning for each variable. Therefore, the variables should
be declared as static. Here is the new version of our header file:

#ifndef DISCOUNTER_H
#define DISCOUNTER_H

static char ItemName[40];
static double OriginalPrice;
static double DiscountRate;
static double DiscountAmount;
static double TaxRate;

static double TaxAmount;
static double NetPrice;

void _ fastcall RequestItemName (char Name[40]);

void _ fastcall RequestOrigPrice(doubles& Original);

void _ fastcall RequestDiscountRate (double& Discount);

void _ fastcall RequestTaxRate (double& Tax);

void _ fastcall CalcDiscount (double Price, double Discount);

void _ fastcall CalcTaxAmount (double Price, double Tax);

void _ fastcall CalcNetPrice(double Orig, double DiscAmt, double TaxAmt);
void _ fastcall ProcessTheOrder();

void _ fastcall ShowReceipt();

#endif // Closing DISCOUNTER H
Here is the new source file:

#include <iostream.h>

#include <stdio.h>

// Used to request a string from the user
#include "Filel.h"

void _ fastcall RequestItemName (char Name[])
{

cout << "Enter the items name: ";
gets (Name) ;

cout << "Enter the original price: $";
cin >> o;

/==
void _ fastcall RequestDiscountRate (double& d)
{

cout << "Enter discount rate: ";

cin >> d;

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

23 of 27

void _ fastcall RequestTaxRate (double& t)
{

cout << "Enter the tax rate: ";

cin >> t;
}
e
void _ fastcall CalcDiscount (double Price, double Discount)
{

DiscountAmount = Price * DiscountRate / 100;
}
/=
void _ fastcall CalcTaxAmount (double Price, double Tax)
{

TaxAmount = Price * TaxRate / 100;
}
/=
void _ fastcall CalcNetPrice(double Price, double Discount,
{

NetPrice = Price - Discount + Tax;
A R

RequestItemName (ItemName) ;

RequestOrigPrice (OriginalPrice) ;

RequestDiscountRate (DiscountRate) ;

RequestTaxRate (TaxRate) ;

CalcDiscount (OriginalPrice, DiscountAmount);
CalcTaxAmount (OriginalPrice, TaxAmount) ;

CalcNetPrice (OriginalPrice, DiscountAmount, TaxAmount);

cout << "\nItem Name: " << ItemName;

cout << "\nOriginal Price: $" << OriginalPrice;
cout << "\nDiscount Amount: $" << DiscountAmount;
cout << "\nTax Amount: $" << TaxAmount;

cout << "\nNet Price: $" << NetPrice;

#include <iostream.h>
#pragma hdrstop'
#include "Filel.h"

int main(int argc, char* argv([])
{
ProcessTheOrder () ;
ShowReceipt () ;

cout << "\n\nPress any key to continue...";
getchar () ;
return 0;

Here is an example of running the program:

Enter the items name: Lamy Jeans
Enter the original price: $45.95
Enter discount rate: 35

Enter the tax rate: 7.55

Item Name: Lamy JeansOriginal Price: $45.95

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions http://www.functionx.com/cppbcb/Lesson04.htm

Discount Amount: $16.0825
Tax Amount: $3.46923
Net Price: $33.3367

Press any key to continue...

1 Creating Files
1. Start a new application. Create it using the Console Wizard and make sure you
select the C++ radio button in the Console Wizard dialog box.
. To save the project, on the Standard toolbar, click the Save All button
. Click the arrow of the Save In combo box and locate the My Documents folder
. Click the Create New Folder button

a b~ W N

. Type Inertia and press Enter. Double-click Inertia to display it in the Save In
combo box.

6. Replace the name Unitl with Main and make sure that the Save As Type combo
box is displaying C++Builder Unit (*.cpp).

7. Press Enter
8. Replace the name of the project with Inertie and press Enter.

9. To create a header file, on the main menu of the C++ Builder, click File ->
New...

10. From the New property page of the New Items dialog box, click the Header File
icon:

11. Click OK
12. To save the header file, on the main menu, click File -> Save

13. In the File Name edit box, type Inertia.h and make sure you include the
extension:

24 of 27

17/01/2006 09:40

Lesson 04 - Exploring Functions

14. Click Save
15. In the empty file, type:

#ifndef Inertia h
#define Inertia h

double _ fastcall MomentOfInertia(const double b,
double _ fastcall MomentOfInertia(const double R);
double _ fastcall MomentOfInertia(const double b,
double _ fastcall GetBase();

double _ fastcall GetHeight();

double _ fastcall GetRadius();

#endif // Inertia_h

http://www.functionx.com/cppbcb/Lesson04.htm

const double h);

const double h, const int);

16. To create the associated source file, on the main menu, click File -> New...

17. From the New property page of the New Items dialog box, click the Cpp File

icon:

18. To save the source file, on the main menu, click File -> Save

19. In the Save Filel As dialog box, replace the name of the file with Inertia.cpp

20. Click Save
21. Replace the empty file with:

#include <iostream.h>
#include "Inertia.h"

25 of 27

17/01/2006 09:40

Lesson 04 - Exploring Functions

// Rectangle
double _ fastcall MomentOfInertia (const double b, const double h)
{

return b * h * h * h / 3;

// Semi-Circle
double _ fastcall MomentOfInertia(const double R)
{

const double PI = 3.14159;

return R * R * R * R * PI/ 8;

e S
// Triangle
double _ fastcall MomentOfInertia(const double b, const double h, const int)
{

return b * h * h * h / 12;
}
= e
double _ fastcall GetBase()
{

double B;

cout << "Base: ";

cin >> B;

return B;

double _ fastcall GetHeight ()
{
double H;

cout << "Height: ";
cin >> H;

return H;

double R;

cout << "Radius: ";
cin >> R;

return R;

22. Click the Main.cpp tab to access the main() function.
23. Change the file as follows:

#include <iostream.h>
#pragma hdrstop
#include "Inertia.h"

#pragma argsused
void inline Announce (const string Figure)
{

cout << "Enter the dimensions of the " << Figure << "\n";

int main(int argc, char* argvl[])
{
double Length, Height, Radius;

Announce ("rectangle") ;
Length = GetBase();

26 of 27

http://www.functionx.com/cppbcb/Lesson04.htm

17/01/2006 09:40

Lesson 04 - Exploring Functions

Height = GetHeight () ;
cout << "Rectangle\n"

<< "Moment of inertia with regard to
cout << "I = " << MomentOfInertia (Length,

Announce ("semi-circle");
Radius = GetRadius();
cout << "Semi-Circle\n"
<< "Moment of inertia with regard to
cout << "I = " << MomentOfInertia (Radius)

Announce ("triangle");
Length = GetBase();
Height = GetHeight();

cout << "\nTriangle\n"

<< "Moment of inertia with regard to
cout << "I = " << MomentOfInertia (Length,
cout << "\nPress any key to continue...";
getchar () ;
return 0;

http://www.functionx.com/cppbcb/Lesson04.htm

the X axis: ";
Height) << "mm\n\n";

the X axis: ";

<< "mm\n\n";

the X axis: ";
Height, 1) << "mm\n";

24. To save the project, on the main menu, click file -> Save All

25. To test the program, on the Debug toolbar, click the Run button

Previous
Inc.

27 of 27

Copyright © 2002-2003 FunctionX,

Next

17/01/2006 09:40

