
Lesson 05 - Conditional Statements http://www.functionx.com/cppb

1 of 30 1

Conditional Statements

Introduction

A program is a series of instructions that ask the computer (actually the compiler)
to check some situations and to act accordingly. To check such situations, the
computer spends a great deal of its time performing comparisons between values.
A comparison is a Boolean operation that produces a true or a false result,
depending on the values on which the comparison is performed.
A comparison is performed between two values of the same type; for example, you
can compare two numbers, two characters, or the names of two cities. On the other
hand, a comparison between two disparate values doesn't bear any meaning. For
example, it is difficult to compare a telephone number and somebody's age, or a
music category and the distance between two points. Like the binary arithmetic
operations, the comparison operations are performed on two values. Unlike
arithmetic operations where results are varied, a comparison produces only one of
two results. The result can be a logical true or false. When a comparison is true, it
has an integral value of 1 or positive; that is, a value greater than 0. If the
comparison is not true, it is considered false and carries an integral value of 0.
The C++ language is equipped with various operators used to perform any type of
comparison between similar values. The values could be numeric, strings, or
objects (operations on objects are customized in a process referred to as Operator
Overloading).

Logical Operators

The Equality ==

To compare two variables for equality, C++ uses the == operator. Its syntax is:
Value1 == Value2
The equality operation is used to find out whether two variables (or one variable
and a constant) hold the same value. From our syntax, the compiler would
compare the value of Value1 with that of Value2. If Value1 and Value2 hold the
same value, the comparison produces a true result. If they are different, the
comparison renders false or 0.

A

W

c
d
f
w

C
T

C

w

s
d
s
w

C

a

s

w

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

2 of 30 17/01/2006 09:41

Most of the comparisons performed in C++ will be applied to conditional
statements; but because a comparison operation produces an integral result, the
result of the comparison can be displayed on the monitor screen using a cout
extractor. Here is an example:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 int Value = 15;

 cout << "Comparison of Value == 32 produces " << (Value == 32) << "\n\n";
 cout << "\n\nPress any key to continue...";
 getchar();
 return 0;
}
//---

The result of a comparison can also be assigned to a variable. As done with the
cout extractor, to store the result of a comparison, you should include the
comparison operation between parentheses. Here is an example:

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

3 of 30 17/01/2006 09:41

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 int Value1 = 15;
 int Value2 = (Value1 == 24);

 cout << "Value 1 = " << Value1 << "\n";
 cout << "Value 2 = " << Value2 << "\n";
 cout << "Comparison of Value1 == 15 produces " << (Value1 == 15) << "\n\n";

 cout << "\n\nPress any key to continue...";
 getchar();
 return 0;
}
//---

This would produce:

Value 1 = 15
Value 2 = 0
Comparison of Value1 == 15 produces 1

Press any key to continue

Very important

The equality operator and the assignment operator
are different. When writing StudentAge = 12, this
means the constant value 12 is assigned to the
variable StudentAge. The variable StudentAge can
change anytime and can be assigned another
value. The constant 12 can never change and is
always 12. For this type of operation, the variable
StudentAge is always on the left side of the
assignment operator. A constant, such as 12, is
always on the right side and can never be on the
left side of the assignment operator. This means
you can write StudentAge = 12 but never 12 =
StudentAge because when writing StudentAge =
12, you are modifying the variable StudentAge
from any previous value to 12. Attempting to write
12 = StudentAge means you want to modify the
constant integer 12 and give it a new value which
is StudentAge: you would receive an error.
NumberOfStudents1 == NumberOfStudents2
means both variables exactly mean the same
thing. Whether using NumberOfStudents1 or
NumberOfStudents2, the compiler considers each
as meaning the other.

The Logical Not Operator !

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

4 of 30 17/01/2006 09:41

When a variable is declared and receives a value (this could be done through
initialization or a change of value) in a program, it becomes alive. It can then
participate in any necessary operation. The compiler keeps track of every variable
that exists in the program being processed. When a variable is not being used or is
not available for processing (in visual programming, it would be considered as
disabled) to make a variable (temporarily) unusable, you can nullify its value. C++
considers that a variable whose value is null is stern. To render a variable
unavailable during the evolution of a program, apply the logical not operator which
is !. Its syntax is:
!Value
There are two main ways you can use the logical not operator. As we will learn
when studying conditional statements, the most classic way of using the logical not
operator is to check the state of a variable.
To nullify a variable, you can write the exclamation point to its left. When used like
that, you can display its value using the cout extractor. You can even assign it to
another variable. Here is an example:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 int Value1 = 250;
 int Value2 = 32;
 int Value3 = =Value1;

 // Display the value of a variable
 cout << "Value1 = " << Value1 << "\n";
 // Logical Not a variable and display its value
 cout << "=Value2 = " << = Value2 << "\n";
 // Display the value of a variable that was logically "notted"
 cout << "Value3 = " << Value3 << "\n";

 cout << "\n\nPress any key to continue...";
 getchar();
 return 0;
}
//---

When a variable holds a value, it is "alive". To make it not available, you can "not"
it. When a variable has been "notted", its logical value has changed. If the logical
value was true, which is 1, it would be changed to false, which is 0. Therefore, you
can inverse the logical value of a variable by "notting" or not "notting" it. This is
illustrated in the following example:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 int Value1 = 482;
 int Value2 = !Value1;

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

5 of 30 17/01/2006 09:41

 cout << " Value1 = " << Value1 << "\n";
 cout << " Value2 = " << Value2 << "\n";
 cout << "!Value2 = " << !Value2 << "\n";

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

For Inequality !=

As opposed to Equality, C++ provides another operator used to compare two
values for inequality. This operation uses a combination of equality and logical not
operators. It combines the logical not ! and a simplified == to produce !=. Its
syntax is:
Value1 != Value2
The != is a binary operator (like all logical operators except the logical not, which is
a unary operator) that is used to compare two values. The values can come from
two variables as in Variable1 != Variable2. Upon comparing the values, if both
variables hold different values, the comparison produces a true or positive value.
Otherwise, the comparison renders false or a null value.

Here is an example:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 int Value1 = 212;
 int Value2 = -46;
 int Value3 = (Value1 != Value2);

 cout << "Value1 = " << Value1 << "\n";
 cout << "Value2 = " << Value2 << "\n";
 cout << "Value3 = " << Value3 << "\n\n";

 cout << "\nPress any key to continue...";
 getchar();
 return 0;

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

6 of 30 17/01/2006 09:41

}
//---

The inequality is obviously the opposite of the equality.

A Lower Value <

To find out whether one value is lower than another, use the < operator. Its syntax
is:
Value1 < Value2
The value held by Value1 is compared to that of Value2. As it would be done with
other operations, the comparison can be made between two variables, as in
Variable1 < Variable2. If the value held by Variable1 is lower than that of
Variable2, the comparison produces a true or positive result.

Here is an example:

//---
#include <iostream.h>
#pragma hdrstop
//---
#pragma argsused
int main(int argc, char* argv[])
{
 int Value1 = 15;
 int Value2 = (Value1 < 24);

 cout << "Value 1 = " << Value1 << "\n";
 cout << "Value 2 = " << Value2 << "\n";

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

Combining Equality and Lower Value <=

The previous two operations can be combined to compare two values. This allows

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

7 of 30 17/01/2006 09:41

you to know if two values are the same or if the first is less than the second. The
operator used is <= and its syntax is:
Value1 <= Value2
The <= operation performs a comparison as any of the last two. If both Value1 and
VBalue2 hold the same value, result is true or positive. If the left operand, in this
case Value1, holds a value lower than the second operand, in this case Value2, the
result is still true.

Here is an example:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 int Value1 = 15;
 int Value2 = (Value1 <= 24);

 cout << "Value 1 = " << Value1 << "\n";
 cout << "Value 2 = " << Value2 << "\n";

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

A Greater Value >

When two values of the same type are distinct, one of them is
usually higher than the other. C++ provides a logical operator
that allows you to find out if one of two values is greater than
the other. The operator used for this operation uses the >
symbol. Its syntax is:
Value1 > Value2
Both operands, in this case Value1 and Value2, can be variables
or the left operand can be a variable while the right operand is
a constant. If the value on the left of the > operator is greater
than the value on the right side or a constant, the comparison
produces a true or positive value . Otherwise, the comparison
renders false or null.

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

8 of 30 17/01/2006 09:41

Greater or Equal Value >=

The greater than or the equality operators can be combined to
produce an operator as follows: >=. This is the "greater than or
equal to" operator. Its syntax is:
Value1 >= Value2
A comparison is performed on both operands: Value1 and
Value2. If the value of Value1 and that of Value2 are the same,
the comparison produces a true or positive value. If the value
of the left operand is greater than that of the right operand,,
the comparison produces true or positive also. If the value of
the left operand is strictly less than the value of the right
operand, the comparison produces a false or null result.

Here is a summary table of the logical operators we have
studied:

Operator Meaning Example Opposite
== Equality to a == b !=

!= Not equal
to 12 != 7 ==

< Less than 25 < 84 >=

<= Less than
or equal to

Cab <=
Tab >

> Greater
than 248 > 55 <=

>=
Greater
than or
equal to

Val1 >=
Val2 <

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

9 of 30 17/01/2006 09:41

Conditions

When programming, you will ask the computer to check various kinds of situations
and to act accordingly. The computer performs various comparisons of various kinds
of statements. These statements come either from you or from the computer itself,
while it is processing internal assignments.
Let’s imagine you are writing an employment application and one question would
be, "Do you consider yourself a hot-tempered individual?" The source file of such a
program would look like this:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 char Answer;

 cout << "Do you consider yourself a hot-tempered individual? ";
 cin >> Answer;

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

Some of the answers a user would type are y, yes, Y, Yes, YES,
n, N, no, No, NO, I don’t know, Sometimes, Why are you
asking?, and What do you mean? The variety of these different
answers means that you should pay attention to how you
structure your programs, you should be clear to the users.

A better version of the line that asks the question would be:
cout << "Do you consider yourself a hot-tempered individual?
(y=Yes/n=No)";
This time, although the user can still type anything, at least
you have specified the expected answers.

Introduction to Conditional Statements

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

10 of 30 17/01/2006 09:41

There are three entities that participate on a traffic
light: the lights, the human beings who interact
with the light, and the law. The road provides a
platform on which these components come together.
The Traffic Light
Everything taken into consideration, a traffic light is
made of three light colors: Green – Yellow/Orange –
Red. When the light is green, the road is clear for
moving in. The red light signals to stop and wait. A
yellow light means, “Be careful, it is not safe to
proceed right now. Maybe you should wait.” When it
is not blinking, the yellow light usually serves as a
transition period from green to red. There is no
transition from red to green.
The Drivers
There are two main categories of people who deal
with the traffic light: the drivers and the walkers. To
make our discussion a little simpler, we will consider
only the driver. When the light is green, a driver can
drive through. When the light is red, the driver is
required to stop and wait.
The Law
Rules and regulations dictate that when a driver
does not obey the law by stopping to a red light, he
is considered to have broken the law and there is a
consequence.

The most independent of the three entities is the traffic light. It
does not think, therefore it does not make mistakes. It is
programmed with a timer or counter that directs it when to act,
that is, when to change lights. The second entity, the driver, is
a human being who can think and make decisions based on
circumstances that are beyond human understanding. A driver
can decide to stop at a green light or drive through a red light…
A driver who proceeds through a red light can get a ticket
depending on one of two circumstances: either a police officer
caught her “hand-in-the-basket” or a special camera took a
picture. Worse, if an accident happens, this becomes another
story.
The traffic light is sometimes equipped with a timer or counter.
We will call it Timer T. It is equipped with three lights: Green,
Yellow, and Red. Let’s suppose that the light stays green for 45
seconds, then its turns and stays yellow for 5 seconds, and
finally it turns and stays red for 1 minute = 60 seconds. At one
moment in the day, the timer is set at the beginning or is reset
and the light is green: T = 0. Since the timer is working fine, it
starts counting the seconds 1, 2, 3, 4, … 45. The light will stay
green from T = 0 to T = 45. When the timer reaches 45, the
timer is reset to 0 and starts counting from 0 until it reaches 5;
meanwhile, Color = Yellow.

Practical Learning: Introduction to Conditional
Statements

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

11 of 30 17/01/2006 09:41

Create a new console application named Conditions11.
Create a C++ source file name Exercise2.
To apply what we have learned, change the file as follows:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 char Light;

 cout << "What is the current light color(g=Green/y=Yellow/r=Red)? ";
 cin >> Light;

 cout << "\nThe current color of the light is " << Light << "\n\n";

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

3.

Test the program4.
Return to your programming environment.5.
Save the project.6.

if a Condition is True

In C++, comparisons are made from a statement. Examples of
statements are:

"You are 12 years old"
"It is raining outside"
You live in Sydney"

When a driver comes to a traffic light, the first thing she does is
to examine the light's color. There are two values the driver
would put together: The current light of the traffic and the
desired light of the traffic.
Upon coming to the traffic light, the driver would have to
compare the traffic light variable with a color she desires the
traffic light to have, namely the green light (because if the light
is green, then the driver can drive through). The comparison is
performed by the driver making a statement such as "The light
is green".
After making a statement, the driver evaluates it and compares
it to what must be true.
When a driver comes to a traffic light, she would likely expect
the light to be green. Therefore, if the light is green (because

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

12 of 30 17/01/2006 09:41

that is what she is expecting), the result of her examination
would receive the Boolean value of TRUE. This produces the
following table:

Color Statement Boolean Value
The light is

green true

One of the comparisons the computer performs is to find out if
a statement is true (in reality, programmers (like you) write
these statements and the computer only follows your logic). If
a statement is true, the computer acts on a subsequent
instruction.
The comparison using the if statement is used to check
whether a condition is true or false. The syntax to use it is:
if(Condition) Statement;
If the Condition is true, then the compiler would execute the
Statement. The compiler ignores anything else:

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

13 of 30 17/01/2006 09:41

If the statement to execute is (very) short, you can write it on the same line
with the condition that is being checked.
Consider a program that is asking a user to answer Yes or No to a question
such as "Are you ready to provide your credit card number?". A source file of
such a program could look like this:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 char Answer;

 // Request the availability of a credit card from the user
 cout << "Are you ready to provide your credit card number(1=Yes/0=No)? ";
 cin >> Answer;

 // Since the user is ready, let's process the credit card transaction
 if(Answer == '1')cout << "\nNow we will need your credit card number.\n";

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

You can write the if condition and the statement on different lines; this makes
your program easier to read. The above code could be written as follows:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 char Answer;

 // Request the availability of a credit card from the user
 cout << "Are you ready to provide your credit card number(1=Yes/0=No)? ";
 cin >> Answer;

 // Since the user is ready, let's process the credit card transaction
 if(Answer == '1')
 cout << "\nNow we will get your credit card information.\n";

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

You can also write the statement on its own line if the statement is too long to
fit on the same line with the condition.
Although the (simple) if statement is used to check one condition, it can lead
to executing multiple dependent statements. If that is the case, enclose the
group of statements between an opening curly bracket “{“ and a closing curly
bracket “}”. Here is an example:

//---
#include <iostream.h>

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

14 of 30 17/01/2006 09:41

#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 char Answer;
 char CreditCardNumber[40];

 // Request the availability of a credit card from the user
 cout << "Are you ready to provide your credit card number(1=Yes/0=No)? ";
 cin >> Answer;

 // Since the user is ready, let's process the credit card transaction
 if(Answer == '1')
 {
 cout << "\nNow we will continue processing the transaction.";
 cout << "\nPlease enter your credit card number without spaces: ";
 cin >> CreditCardNumber;
 }

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

If you omit the brackets, only the statement that immediately follows the
condition would be executed.
When studying logical operators, we found out that if a comparison produces a
true result, it in fact produces a non zero integral result. When a comparison
leads to false, its result is equivalent to 0. You can use this property of logical
operations and omit the comparison if or when you expect the result of the
comparison to be true, that is, to bear a valid value. This is illustrated in the
following program:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 int Number;

 cout << "Enter a non zero number: ";
 cin >> Number;

if(Number)
 cout << "\nYou entered " << Number << endl;

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

Practical Learning: The if Statement

To apply the if condition to our traffic light study, click on the right side of the
cin>> Light line and press Enter twice.

1.

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

15 of 30 17/01/2006 09:41

Change the line to display:

if (Light == 'g') cout << "You can proceed and drive through.";

2.

Test the program.3.
When prompted, test the program by typing g and press Enter. Notice the
sentence that is displaying.

4.

Press any key to get back. 5.
Test the program again. This time, type anything else but g and press Enter.
Notice that nothing particular displays.

6.

Return to your programming environment.7.
To send the statement to the next line, change the file as follows:

if(Light == 'g')
 cout << "You can proceed and drive through.";

8.

Test the program and return to your programming environment.9.
To process more than one statement for the if condition, change the if section
as follows:

if(Light == 'g')
{
 cout << "\nThe light is green";
 cout << "\nYou can proceed and drive through.\n";
}

10.

Test the program and return to your programming environment.11.
Save your project.12.

Using the Logical Not

When a driver comes to a light that he expects to be green, we
saw that he would use a statement such as, "The light is green".
If in fact the light is green, we saw that the statement would
lead to a true result. If the light is not green, the "The light is
green" statement produces a false result. This is shown in the
following table:

Color Statement Boolean Value
The light is

green true

The light is
green false

As you may realize already, in Boolean algebra, the result of
performing a comparison depends on how the Condition is
formulated. If the driver is approaching a light that he is
expecting to display any color other than green, he would start
from a statement such as "The light is not green". If the light

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

16 of 30 17/01/2006 09:41

IS NOT green, the expression "The light is not green" is true
(very important). This is illustrated in the following table:

Color Statement Boolean Value
The light is

green true

The light is not
green true

The "The light is not green" statement is expressed in Boolean
algebra as “Not the light is green”. Instead of writing “Not the
light is green", in C++, using the logical Not operator , you
would formulate the statement as, !"The light is green".
Therefore, if P means “The light is green”, you can express the
negativity of P as !P. The Boolean table produced is:

Color Statement
Boolean

Value
Symbol

The light is green true P

The light is not
green false !P

When a statement is true, its Boolean value is equivalent to a
non-zero integer such as 1. Otherwise, if a statement produces a
false result, it is given a 0 value. Therefore, our table would be:

Color Statement
Boolean

Value
Integer
Value

The light is green true 1

The light is not
green false 0

Otherwise: if…else

The if condition is used to check one possibility and ignore
anything else. Usually, other conditions should be considered. In
this case, you can use more than one if statement. For example,
on a program that asks a user to answer Yes or No, although the
positive answer is the most expected, it is important to offer an
alternate statement in case the user provides another answer.
Here is an example:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 char Answer;

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

17 of 30 17/01/2006 09:41

 cout << "Do you consider yourself a hot-tempered individual(y=Yes/n=No)? ";
 cin >> Answer;

 if(Answer == 'y') // First Condition
 {
 cout << "\nThis job involves a high level of self-control.";
 cout << "\nWe will get back to you.\n";
 }
 if(Answer == 'n') // Second Condition
 cout << "\nYou are hired!\n";

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

The problem with the above program is that the second if is not an alternative
to the first, it is just another condition that the program has to check and
execute after executing the first. On that program, if the user provides y as the
answer to the question, the compiler would execute the content of its statement
and the compiler would execute the second if condition.
You can also ask the compiler to check a condition; if that condition is true, the
compiler will execute the intended statement. Otherwise, the compiler would
execute alternate statement. This is performed using the syntax:
if(Condition)

Statement1;
else

Statement2;

The above program would better be written as:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 char Answer;

 cout << "Do you consider yourself a hot-tempered individual(y=Yes/n=No)? ";
 cin >> Answer;

 if(Answer == 'y') // One answer
 {
 cout << "\nThis job involves a high level of self-control.";
 cout << "\nWe will get back to you.\n";
 }
 else // Any other answer
 cout << "\nYou are hired!\n";

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

18 of 30 17/01/2006 09:41

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

Practical Learning: The if…else Statement

To consider when the traffic light’s color is other than green, change your
program as follows:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 char Light;

 cout << "What is the current light color(g=Green/y=Yellow/r=Red)? ";
 cin >> Light;

 if (Light == 'g')
 {
 cout << "\nThe light is green";
 cout << "\nYou can proceed and drive through.\n";
 }
 else
 cout << "\nPlease wait!\n";

 cout << "\nPress any key to continue...";
 getchar();
 getchar();
 return 0;
}
//---

1.

Test the program and return to your programming environment2.
Save your project.3.

The Conditional Operator (?:)

The conditional operator behaves like a simple if…else statement. Its syntax
is:
Condition ? Statement1 : Statement2;
The compiler would first test the Condition. If the Condition is true, then it
would execute Statement1, otherwise it would execute Statement2. When you
request two numbers from the user and would like to compare them, the
following program would do find out which one of both numbers is higher. The
comparison is performed using the conditional operator:

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

19 of 30 17/01/2006 09:41

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 signed Num1, Num2, Max;

 cout << "Enter two numbers: ";
 cin >> Num1 >> Num2;

 Max = (Num1 < Num2) ? Num2 : Num1;

 cout << "\nThe maximum of " << Num1
 << " and " << Num2 << " is " << Max;

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

Conditional Statements: if…else if and if…else
if…else

The previous conditional formula is used to execute one of two
alternatives. Sometimes, your program will need to check many
more than that. The syntax for such a situation is:
if(Condition1)

Statement1;
else if(Condition2)

Statement2;
An alternative syntax would add the last else as follows:

if(Condition1)
Statement1;

else if(Condition2)
Statement2;

else
Statement-n;

if(Condition1)
Statement1;

else if(Condition2)
Statement2;

else if(Condition3)
Statement3;

else
Statement-n;

The compiler will check the first condition. If Condition1 is true,
it will execute Statement1. If Condition1 is false, then the
compiler will check the second condition. If Condition2 is true,
it will execute Statement2. When the compiler finds a
Condition-n to be true, it will execute its corresponding
statement. It that Condition-n is false, the compiler will check
the subsequent condition. This means you can include as many
conditions as you see fit using the else if statement. If after
examining all the known possible conditions you still think that
there might be an unexpected condition, you can use the
optional single else.

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

20 of 30 17/01/2006 09:41

A program we previously wrote was considering that any
answer other than y was negative. It would be more
professional to consider a negative answer because the
program anticipated one. Therefore, here is a better version of
the program:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 char Answer;

 cout << "Do you consider yourself a hot-tempered individual(y=Yes/n=No)? ";
 cin >> Answer;

 if(Answer == 'y') // Unique Condition
 {
 cout << "\nThis job involves a high level of self-control.";
 cout << "\nWe will get back to you.\n";
 }
 else if(Answer == 'n') // Alternative
 cout << "\nYou are hired!\n";
 else
 cout << "\nThat's not a valid answer!\n";

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

Practical Learning: if…else if and if…else if…else

To consider various answers that the user could give, change your program as
follows:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 char Light;

 cout << "What is the current light color(g=Green/y=Yellow/r=Red)? ";
 cin >> Light;

 if(Light == 'g')
 {
 cout << "\nThe light is green";
 cout << "\nYou can proceed and drive through.\n";
 }
 else if(Light == 'y')
 cout << "\nBe careful!\n";

1.

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

21 of 30 17/01/2006 09:41

 else if(Light == 'r')
 cout << "\nPlease Stop!!!";
 else
 cout << endl << Light << " is not a valid color.\n";

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

Test the program.2.
Type a letter and press Enter. See the result.3.
Test the program again and provide different answers, those that are valid and
those that are not.

4.

Return to your development environment and save your project.5.

The switch Statement

When defining an expression whose result would lead to a
specific program execution, the switch statement considers that
result and executes a statement based on the possible outcome
of that expression, this possible outcome is called a case. The
different outcomes are listed in the body of the switch statement
and each case has its own execution, if necessary. The body of a
switch statement is delimited from an opening to a closing curly
brackets: “{“ to “}”. The syntax of the switch statement is:

switch(Expression)
{
 case Choice1:

Statement1;
 case Choice2:

Statement2;
 case Choice-n:

Statement-n;
}

The expression to examine is an integer. Since an enumeration
(enum) and the character (char) data types are just other forms
of integers, they can be used too. Here is an example of using
the switch statement:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 int Number;

 cout << "Type a number between 1 and 3: ";
 cin >> Number;

 switch (Number)

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

22 of 30 17/01/2006 09:41

 {
 case 1:
 cout << "\nYou typed 1";
 case 2:
 cout << "\nYou typed 2";
 case 3:
 cout << "\nYou typed 3";
 }

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

The program above would request a number from the user. If
the user types 1, it would execute the first, the second, and
the third cases. If she types 2, the program would execute the
second and third cases. If she supplies 3, only the third case
would be considered. If the user types any other number, no
case would execute.
When establishing the possible outcomes that the switch
statement should consider, at times there will be other
possibilities other than those listed and you will be likely to
consider them. This special case is handled by the default
keyword. The default case would be considered if none of the
listed cases matches the supplied answer. The syntax of the
switch statement that considers the default case would be:

switch(Expression)
{
 case Choice1:

Statement1;
 case Choice2:

Statement2;
 case Choice-n:

Statement-n;
 default:

Other-Possibility;
}

Therefore another version of the program above would be

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 int Number;

 cout << "Type a number between 1 and 3: ";
 cin >> Number;

 switch (Number)
 {
 case 1:
 cout << "\nYou typed 1";
 case 2:
 cout << "\nYou typed 2";

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

23 of 30 17/01/2006 09:41

 case 3:
 cout << "\nYou typed 3";
 default:
 cout << endl << Number << " is out of the requested range.";
 }

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

Practical Learning: Switching Cases

Change the file as follows:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 char Light;

 cout << "What is the current light "
 << "color(g=Green/y=Yellow/r=Red)? ";
 cin >> Light;

 switch(Light)
 {
 case 'g':
 cout << "\nThe light is green";
 cout << "\nYou can proceed and drive through...";
 cout << "\nNow, passing from Green to Yellow...\n";

 case 'y':
 cout << "\nThe light has passed from Green to Yellow\n";
 cout << "Timer = 0. Yellow Light - Be Careful!\n";
 cout << "Timer = 1. Yellow Light - Be Careful!\n";
 cout << "Timer = 2. Yellow Light - Be Careful!\n";
 cout << "Timer = 3. Yellow Light - Be Careful!\n";
 cout << "Timer = 4. Yellow Light - Be Careful!\n";
 cout << "Timer = 5. Yellow Light - Be Careful!\n";
 cout << "\nYellow light ended.\n";

 case 'r':
 cout << "\nRed Light - Please Stop!!!";
 cout << "\nTimer:\t 1 2 3 4 5 6 7 8 9 10";
 cout << "\n\t11 12 13 14 15 16 17 18 19 20";
 cout << "\n\t21 22 23 24 25 26 27 28 29 30";
 cout << "\n\t31 32 33 34 35 36 37 38 39 40";
 cout << "\n\t41 42 43 44 45 46 47 48 49 50";
 cout << "\n\t51 52 53 54 55 56 57 58 59 60";
 cout << "\nEnd of Red Light.";
 }

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

1.

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

24 of 30 17/01/2006 09:41

Test the program and return to your programming environment.2.
Save your project.3.

Counting and Looping

The C++ language provides a set of control statements that
allows you to conditionally control data input and output. These
controls are referred to as loops.

The while Statement

The while statement examines or evaluates a condition. The
syntax of the while statement is:
while(Condition) Statement;

To execute this expression, the compiler first examines the
Condition. If the Condition is true, then it executes the
Statement. After executing the Statement, the Condition is
checked again. AS LONG AS the Condition is true, it will keep
executing the Statement. When or once the Condition becomes
false, it exits the loop.
Here is an example:

int Number;

while(Number <= 12)
{
 cout << "Number " << Number << endl;
 Number++;
}

To effectively execute a while condition, you should make sure
you provide a mechanism for the compiler to use a get a
reference value for the condition, variable, or expression being
checked. This is sometimes in the form of a variable being

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

25 of 30 17/01/2006 09:41

initialized although it could be some other expression. Such a
while condition could be illustrated as follows:

An example would be:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 int Number;

 while(Number <= 12)
 {
 cout << "Number " << Number << endl;
 Number++;
 }

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

Practical Learning: Using the while Statement

Change the file as follows:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 int Timer = 0;

 while(Timer <= 5)

1.

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

26 of 30 17/01/2006 09:41

 {
 cout << Timer << ". Yellow Light - Be Careful!\n";
 Timer++;
 }
 cout << "\nYellow light ended. Please Stop!!!\n";

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

Test the program and return to your programming environment.2.

The do...while Statement

The do…while statement uses the following syntax:
do Statement while (Condition);

The do…while condition executes a Statement first. After the
first execution of the Statement, it examines the Condition. If
the Condition is true, then it executes the Statement again. It
will keep executing the Statement AS LONG AS the Condition is
true. Once the Condition becomes false, the looping (the
execution of the Statement) would stop.
If the Statement is a short one, such as made of one line,
simply write it after the do keyword. Like the if and the while
statements, the Condition being checked must be included
between parentheses. The whole do…while statement must
end with a semicolon.
Another version of the counting program seen previously would
be:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 int Number = 0;

 do

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

27 of 30 17/01/2006 09:41

 cout << "Number " << Number++ << endl;
 while(Number <= 12);

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

If the Statement is long and should span more than one line,
start it with an opening curly braket and end it with a closing
curly bracket.
The do…while statement can be used to insist on getting a
specific value from the user. For example, since our ergonomic
program would like the user to sit down for the subsequent
exercise, you can modify your program to continue only once
she is sitting down. Here is an example on how you would
accomplish that:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 char SittingDown;

 cout << "For the next exercise, you need to be sitting down\n";
 do {
 cout << "Are you sitting down now(y/n)? ";
 cin >> SittingDown;
 }
 while(!(SittingDown == 'y'));

 cout << "\nWonderful!!!";
 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

Practical Learning: Using The do…while Statement

To apply a do…while statement to our traffic program, change the file as
follows:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 char Answer;

1.

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

28 of 30 17/01/2006 09:41

 do {
 cout << "Check the light: is it green yet(1=Yes/0=No)? ";
 cin >> Answer;
 } while(Answer != '1');

 cout << "\nNow, you can proceed and drive through!\n";
 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

Test the program. Here is an example:

Check the light: is it green yet(1=Yes/0=No)? 5
Check the light: is it green yet(1=Yes/0=No)? b
Check the light: is it green yet(1=Yes/0=No)? y
Check the light: is it green yet(1=Yes/0=No)? s
Check the light: is it green yet(1=Yes/0=No)? 0
Check the light: is it green yet(1=Yes/0=No)? 1

Now, you can proceed and drive through!
Press any key continue...

2.

Return to your programming environment.3.
Save your project.4.

The for Statement

The for statement is typically used to count a number of items. At
its regular structure, it is divided in three parts. The first section
specifies the starting point for the count. The second section sets
the counting limit. The last section determines the counting
frequency. The syntax of the for statement is:
for(Start; End; Frequency) Statement;
The Start expression is a variable assigned the starting value. This
could be Count = 0;
The End expression sets the criteria for ending the counting. An
example would be Count < 24; this means the counting would
continue as long as the Count variable is less than 24. When the
count is about to rich 24, because in this case 24 is excluded, the
counting would stop. To include the counting limit, use the <= or
>= comparison operators depending on how you are counting. The
Frequency expression would let the compiler know how many
numbers to add or subtract before continuing with the loop. This
expression could be an increment operation such as ++Count.

Here is an example that applies the for statement:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 for(int Count = 0; Count <= 12; Count++)

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

29 of 30 17/01/2006 09:41

 cout << "Number " << Count << endl;

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

The C++ compiler recognizes that a variable declared as the counter
of a for loop is available only in that for loop. This means the scope
of the counting variable is confined only to the for loop. This allows
different for loops to use the same counter variable. Here is an
example:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 for(int Count = 0; Count <= 12; Count++)
 cout << "Number " << Count << endl;
 cout << endl;

 for(int Count = 10; Count >= 2; Count--)
 cout << "Number " << Count << endl;

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

Some compilers do not allow the same counter variable in more
than one for loop. The counter variable’s scope spans beyond the for
loop. With such a compiler, you must use a different counter
variable for each for loop. An alternative to using the same counter
variable in different for loops is to declare the counter variable
outside of the first for loop and call the variable in the needed for
loops. Here is an example:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 int Count;

 for(Count = 0; Count <= 12; Count++)
 cout << "Number " << Count << endl;
 cout << endl;

 for(Count = 10; Count >= 2; Count--)
 cout << "Number " << Count << endl;

 cout << "\nPress any key to continue...";
 getchar();
 return 0;

Lesson 05 - Conditional Statements http://www.functionx.com/cppbcb/Lesson05.htm

30 of 30 17/01/2006 09:41

}
//---

Practical Learning: Using the for Statement

To apply the for statement to our traffic program, change the file as follows:

//---
#include <iostream.h>
#pragma hdrstop

//---

#pragma argsused
int main(int argc, char* argv[])
{
 int Timer;

 for(Timer = 0; Timer <= 5; ++Timer)
 cout << Timer << ". Yellow Light - Be Careful!\n";
 cout << "\nYellow light ended. Please Stop!!!\n";

 cout << "\nPress any key to continue...";
 getchar();
 return 0;
}
//---

1.

Test the program:

0. Yellow Light - Be Careful!
1. Yellow Light - Be Careful!
2. Yellow Light - Be Careful!
3. Yellow Light - Be Careful!
4. Yellow Light - Be Careful!
5. Yellow Light - Be Careful!

Yellow light ended. Please Stop!!!

Press any key to continue...

2.

Return to your programming environment.3.
Save your project.4.

Previous Copyright © 2002-2003 FunctionX,
Inc. Next

