
DIGITAL SYSTEM DESIGN - (E3.05 DSD) 1.1

pykc/2005

Digital System Design

§1 - INTRODUCTION

The objectives of this course are for you to learn:
• How to go about designing complex, high speed digital systems (not just

circuits)?
• How to use some of the modern CAD tools to help with the design?
• How to implement such designs using programmable logic (e.g. FPGAs)?
• How to read data sheets and make sense of them?
• How do digital building blocks (such as memory chips, microprocessors,

arithmetic circuits etc.) work?
• How to interface to microprocessors and computers (from hardware point of

view)?
• How to deal with testing of complex systems?

The course syllabus is divided into six main sections:

1) Programmable Logic
 In most digital systems, the circuitry can be divided into two major sections:

datapath and control. Datapath circuits perform operations on data (e.g. adding
numbers together, counting events etc.) while the control circuitry generates the
control signals needed to ensure that such operations are performed at the right
times and in the right order. The datapath circuitry is generally fairly
straightforward. In fact most commonly used functions are usually available as a
library component which are parameterisable. The control circuitry is more
challenging and interesting. We will be examining how both datapath circuits and
control circuit can be designed using FPGA and CPLD chips.

2) Arithmetic Circuits
 You use adders, multipliers etc. all the time. How do they work? What are the

different trade-offs in choosing one circuit instead of another? How do floating-
point arithmetic circuits work? To understand how arithmetic circuits work, it is
necessary to relate logical operations performed on the bits that make up a digital
number to the arithmetic effects that they have on the number's value.

3) Data Encoding
 Complex digital systems are invariably broken down into subsystems. We shall

look at the ways in which information is transmitted between subsystems, how
errors can be detected and corrected.

DIGITAL SYSTEM DESIGN - (E3.05 DSD) 1.2

pykc/2005

4) High Speed Design Issues

Modern digital systems run at system clock rate of 66 MHz and above, and on-
chip clock rate of well over 100 MHz. We will examine issues relating to logic
interfacing, metastability, transmission line effects etc. which affect system
performance.

5) Architectures
 Given an algorithm, how can it be implemented with digital hardware?

Architectures are the different ways that an algorithm can be implemented as
circuits. For example, one might use parallel, serial-parallel, array-type
architecture. In particular, we will be examining some well-known architecture
for digital hardware, e.g. distributed arithmetic based circuits and cordic based
circuits.

6) Testing
 Hardware is getting denser. Packaging technology is improving to so much that

signal pins are either difficult or impossible to get at! Testing complex digital
circuits become extremely difficult. You will learn about a new international
standard known as JTAG or boundary-scan for digital board testing.

Books
There are many books available on Digital Circuit Design - most of them range from
pretty rotten, to simplistic, to moderate, to good! No single book was found to contain
all the materials covered on this course. The course is therefore supported by full
printed notes. However, I recommend you to consider the following well-written
textbooks:

"Digital Design Principles and Practices", 4th Edition (Sept 2005), John F. Wakerly,
Prentice Hall.
This is a new edition of a well established textbook. It covers a significant portion of
the materials taught on this course. At ~£45 (www.whsmith.co.uk), this a bargain.
Recommended purchase if you have not already done so!

“Contemporary Logic Design”, Gaetano Boriello, Randy H. Katz, August 2004,
Prentice Hall.
Good coverage on finite state machines and computer architectures. (~£39)

DIGITAL SYSTEM DESIGN - (E3.05 DSD) 1.3

pykc/2005

"High-Speed Digital Design - A handbook of black magic", Howard G. Johnson,
Prentice Hall, 1993; ISBN 0-13-395724-1 (£61). The best practical guide to
designing and building very high speed digital circuits. Expensive reference for your
company to buy.

Course Work Assessment
The most effective way to learn about digital design is actually doing it! As part of
this course, I will require a piece of course work to be submitted. The course work
involves designing a chip to decode JPEG images in hardware using Xilinx
Virtex-2 Pro FPGA board. Details will follow later.

DIGITAL SYSTEM DESIGN 2.1

pykc/2005

§2 - DESIGN METHODOLOGIES & IMPLEMENTATION
TECHNOLOGIES

2.1 Different Levels of Design

It is possible to design a digital system using ad hoc, intuitive method, using pen and
paper, and a bit of brain cells. However, if the system is of moderate to high
complexity, ad hoc methods do not usually lead to working systems (definitely not
right-first-time), let alone optimised systems! Much has been learned from
structured, top-down design method developed for software engineering. Hardware
engineers are now approach design much more systematically than before. In addition,
computers are getting cheaper and more powerful. CAD tools are also becoming more
available, even to (cash-starved) Universities. It is now possible to design complex
digital circuits systematically on a computer, simulate the entire design down to
component level and verify that everything works before even considering making any
hardware!

Designing a complex system can be approached at different levels. Figure 2.1 shows
the divisions between them with some relevant explanations:

Design
Levels

Design
Descriptions

Primitive
Components

Theoretical Techniques

Algorithmic Specifications Functional
blocks

Signal processing theory

 High-level lang. 'black boxes' Control theory
 Math. equations Sorting algorithm

Functional VHDL, Verilog Registers Automata theory
 FSM language Counters Timing analysis
 C/Pascal ALU

Logic Boolean equations Logic gates Boolean algebra
 Truth tables Flip-flops K-map
 Timing diagrams Boolean minimization

Circuit Circuit equations Transistors Linear/non-linear eq.
 Transistor netlist Passive comp. Fourier analysis

Figure 2.1 Levels of Design

DIGITAL SYSTEM DESIGN 2.2

pykc/2005

2.2 The Design Process

Figure 2.2 The Top-down Design Process

���� Top-down design strategies

• Refine Specification successively
• Decompose each component into small components
• Lowest-level primitive components
• Over-sold methodology - only works with plenty of experience

���� Bottom-up design strategies

• Build-up from primitive components
• Combined to form more complex components
• Risk wrong interpretation of specifications

���� Mixed strategies

• Mostly top-down, but also bits of bottom-up
• Reality: need to know both top level and bottom level constraints

Specification
Specification

Preliminary
design

Preliminary
design

Functional
description

Functional
description

Detail design
Detail design

Design
description

Design
description

Implementation
Optimisation
Verification

Implementation
Optimisation
Verification

Manufacturing
Manufacturing

Testing
Testing

High-level (behavioural)
simulation

Schematic/HDL capture
Logic simulation
Timing analysis

Simulation
Logic synthesis &
Optimisation

Boundary-scan
Built-in testing

DIGITAL SYSTEM DESIGN 2.3

pykc/2005

2.3 Design Descriptions

Designs can be described in many ways. Representation and notations are extremely
important because they can affect how designs can be view and refined. The most
appropriate description for a design depends on which level of design one is engaging
in. For example, top-level specification could be in natural language (as in many
formal specifications), in equations form (such as difference equation for a digital
filter), in data-flow diagrams (as in software), in behavioural languages such as AHDL
or VHDL.

It also depends on what type of circuit you are designing. For example, the easiest way
to define a finite-state machine is a special finite-state machine language (such as
AHDL on Altera's Maxplus-II). To obtain an overview of the entire system, some
form of graphical block diagram is usually very helpful.

Very roughly, design descriptions can be divided into graphical description using
schematic capture or language description using some form of hardware description
language. Here is a comparison between the two:

Schematic capture

Good for multiple data flow
Give overview picture

Relates to hardware better
Doesn't need to be good in computing

High information density
Back annotations possible

Mixed analogue/digital possible

Not good for algorithms
Not good for datapaths

Doesn't interface well in optimiser
No good for synthesis software

Difficult to reuse
Not parameterisable

Hardware Description
Languages

Flexible & parameterisable
Excellent for optimisation & synthesis

Direct mapping to algorithms
Excellent for datapaths

Readily interfaced to optimiser
Easy to handle and transmit

(electronically)

Essentially serial representation
May not show overall picture

Often need good programming skill
Divorce from physical hardware

Need special software

DIGITAL SYSTEM DESIGN 2.4

pykc/2005

2.4 Design tools

CAD design tools are commonly available. They range from cheap PC-based PCB
layout tools, to medium cost PC-based schematic capture and simulation programs to
expensive workstation based packages. You, in your earlier years, have already been
exposed to Altera's MaxPlus-II Design System. On this course, you will be using
Xilinx’s ISE for all the designs, a version of which can be downloaded from the web
free of charge! Both systems are available on any PC installed in all the teaching and
computer laboratories in the Department.

The Altera and Xilinx design systems contain the most of the following features:
• Schematic Capture
• Hardware Description Language

Entry
• Logic Synthesis & Optimisation
• Timing Analysis
• Parameterised Library Components

• Hierarchical Design Management
• Symbol Editing
• Simulation with Timing
• Autoplacement and Routing
• Floorplan Editing
• Reporting

2.5 Implementation Technologies
Good designs cannot be divorced from implementation and technology. How can one
turn a digital design into real circuits? Figure 2.3 shows a typical digital system and
its constituent parts. It usually has a microprocessor, a bank of memory (RAM or
ROM), other off-the-shelf complex circuits such as ADC, DAC, Modem chip etc., and
glue-logic which connect all these parts together. The glue logic generates the
necessary control signals for the rest of the system. In general, a digital system can be
implemented with five types of components:

•••• Standard parts
•••• Special off-the-shelf parts
•••• Programmable Logic Devices
•••• Programmable Gate Arrays
•••• Custom Integrated Circuits

DIGITAL SYSTEM DESIGN 2.7

pykc/2005

Figure 2.3 The constituent parts of a typical digital system

Figure 2.4 Implementation Technologies

Microprocessor

Complex ASIC

RAM/ROM Buffer memories

Glue LogicBus interface
circuits

Digital Circuit

Custom
Components

Standard off-the-
shelf Components

TTL logic
CMOS logic

Various microprocessors
ASIC chips

Full-custom circuits

very high risk
expensive/long lead time

good for high volumn
good for high performance

Semi-custom circuits

Good compromise
between risk, cost,

performance, design time

CPLDs, PALs

Prgraoomable AND-OR
arrays

Fuses or isolated gate
transistors

Gate Arrays

Sea-of-gates
High to medium complexity

circuits

Field Programmable
Gate Arrays (FPGA)

RAM-based arrays from
Xilinx, Altera and others

Very fast growing
technology

Cell-based design

Almost full-custom designs
Uses standard cell library

