Why Programmable Logic Devices (PLDs)?
- Low cost, low risk way of implementing digital circuits as application specific ICs (ASICs).
- Technology of choice for low to medium volume products (say hundreds to few 10’s of thousands per year).
- Good and low cost design software.
- Latest high density devices are over 1 million gates!

Basic FPGA Architectures
- All FPGAs have the following key elements:
 - The Programming technology
 - The basic logic cells
 - The I/O logic cells
 - Programmable interconnect
 - Software to design and program the FPGA
- Currently the four main players in this field are:-
 - Actel
 - Altera
 - Xilinx
 - Atmel

PLD Technologies: Antifuse
- Invented at Stanford and developed by Actel. Currently mainly used for military applications. See www.actel.com.

Actel FPGAs
- Uses antifuse technology
- Based on channelled gate array architecture as shown below
- Each logic element (labelled ‘L’) is a combination of multiplexers which can be configured as a multi-input gate
Actel Logic Element

- Generally used in product-term type of PLDs.
- Non-volatile and reprogrammable.
- Good for FSM, less good for arithmetic circuits.

PLD Technologies: EPROM & EEPROM

- Generally used in product-term type of PLDs.
- Non-volatile and reprogrammable.
- Good for FSM, less good for arithmetic circuits.

An EPROM transistor:
(a) With a high (>12V) programming voltage, V_{PP}, applied to the drain, electrons gain enough energy to "jump" onto the floating gate (gate1).
(b) Electrons stuck on gate1 raise the threshold voltage so that the transistor is always off for normal operating voltages.
(c) UV light provides enough energy for the electrons stuck on gate1 to "jump" back to 1 bulk, allowing the transistor to operate normally.

Facts and keywords: Altera MAX 5000 EPLDs and Xilinx EPLDs both use UV-erasable electrically programmable read-only memory (EPROM) • hot-electron injection or avalance injection • floating-gate avalanche MOS (FAMOS).

ALTERA MAX CPLDs

- CPLD = Complex Programmable Logic Devices
- FPGA = Field Programming Gate Arrays
- Altera has four different PLD families:
 - MAX family – product-term based macrocells CPLDs
 - FLEX family – SRAM based lookup tables (LUTs)
 - APEX family – mixture of product-term and LUT based devices
 - Stratix family – Advanced FPGAs with embedded blocks (Stratix-2 is currently the most advanced FPGA devices)

MAX7000 Logic Element

- macrocell implements a Boolean expression in the form of sum-of-product (SOP).
- An example of such a sum-of-product is: $a\cdot!b\cdot c\cdot d + a\cdot c\cdot e + !a\cdot f$
- Each product term could have many input variables ANDed together.
- Each SOP could have a number of product terms ORed together.
- Each macrocell also contains a flip-flop – essential for implementing FSM.

Facts and keywords: Altera MAX 5000 EPLDs and Xilinx EPLDs both use UV-erasable electrically programmable read-only memory (EPROM) • hot-electron injection or avalance injection • floating-gate avalanche MOS (FAMOS).
MAX7000 Logic Element

- Each horizontal line represents a product term.
- Inputs are presented to the product term as signal and its inverse.
- Each macrocell can perform OR of 4 product terms together.
- Each LAB shares an additional 16 shared product terms in order to cope with more complex Boolean equations.
- Output XOR gate allows either efficient implementation of XOR function or programmable logic inversion.
- The SOP output can drive the output directly or can be passed through a register.
- This architecture is particularly good for implementing finite state machine.
- Each register can store one state variable. This can be fed back to the logic array via the Programmable Interconnect Array (PIA).
- This is not efficient for adder or multiplier circuits or as buffer storage (such as register file or FIFO buffers) – waste the potential of the logic array.

MAX7000 LABs

- Consists of Logic Array Blocks (LABs), each with 16 macro-cells
- PIA = Programmable Interconnect Array

PLD Technologies: Static RAM

- Almost all Field Programmable Gate Arrays (FPGAs) are based on static RAMs.
- Static RAM cells are used for three purposes:
 - As lookup tables (LUTs) for implementing logic (as truth-table).
 - As embedded block RAM blocks (for buffer storage etc.).
 - As control to routing and configuration switches.
- **Advantages:**
 - Easily changeable (even dynamic reconfiguration)
 - Good density
 - Track latest SRAM technology (moving even faster than technology for logic)
 - Flexible – not only good for FSM, also good for arithmetic circuits
- **Disadvantages:**
 - Volatile
 - Generally high power

Xilinx FPGAs

- Start with XC4000
- Virtex Family
- Virtex-II Family
- Virtex-II PRO (We use this for your coursework)
- Virtex-4 Families
Xilinx FPGA (XC4000)

- Xilinx – first to introduce SRAM based FPGA using Lookup Tables (LUTs)
- Xilinx 4000 series contains four main building blocks:
 - Configurable Logic Block (CLB)
 - Switch Matrix
 - VersaRing
 - Input/Output Block

Each CLB has two 4-input Lookup Tables (LUTs) and two registers.
The two LUTs implement two independent logic functions F and G.
The outputs F’ and G’ from the two LUTs inside each CLB can be combined to form a more complex function H.
CLBs are linked together to form carry and cascade chain circuits (not shown in diagram)
For the 4000E family, each CLB can be configured as synchronous RAM. Write address, data, and control are synchronized to write clock. This is called distributed RAM.
Possible configurations are:
- Two independent 16 x 1 RAMS
- One 32 x 1 or 16 x 2 RAM
- One 16 x 1 dual-port RAM (second port is read-only)
Xilinx new families: Virtex-2 CLB

- All CLB inputs have access to interconnect on all four sides
- Two identical slices in each CLB
- Slices have bit pitch of 2
- Fast local feedback within CLB
- Direct connects to adjacent horizontal CLBs

Virtex Slice Model

Virtex Carry Select

Virtex LUT as Pipeline Delay
SelectShift Replaces Register Files

32-bit 8 cycle delay
Function G (5 cycles)

32-bit 13 cycle delay
Function H (1 cycle)

32 LUTs replace 256 registers
32 LUTs replace 416 registers

Virtex Block SelectRAM

- 2 Columns of Blocks on left and right
- 1 Block per 4 CLB rows.
- 4K bits of data
- Full Synchronous operation
 - No Asynchronous Read
- Ports can be configured to different widths
- Synchronous reset for Finite State Machine

Virtex-II Pro Platform FPGA

- 3.125 Gbps Multi-Gigabit Transceivers (MGTs)
- Supports 10 Gbps standards
- Up to 24 per device
- 3.125 Gbps Multi-Gigabit Transceivers (MGTs)
- Supports 10 Gbps standards
- Up to 24 per device
- IP-Immersion™ Fabric
- ActiveInterconnect™
- 18Kb Dual-Port RAM
- Xtreme™ Multipliers
- 16 Global Clock Domains
Virtex-II PRO - Platform FPGA Technology

- Leading edge 130nm process technology
- Ultra-high performance 92nm gate length Transistors
- 1.5V Core
- 9 Metal layers - All Copper technology

Processor Integration Technology

IP-Immersion™ Fabric

IP-Immersion Tiles provide IP-to-Fabric connectivity

FPGA CLB Array

Interface Logic

Virtex-II Pro & MicroBlaze

- RISC
 - 32-bit ALU, 32-bit data bus, 32-bit instruction word, 32 x 32 General Purpose Register file
- Harvard architecture (i.e. separate program and data memory space)
- 3 stage pipeline (IF, OF, EX)
- Proprietary instruction set has been created for MicroBlaze.

Virtex-2 PRO Board for coursework
4th Generation Virtex – V4

Advanced 90nm Process Technology
- Advanced 90-nm Process
- 11-Layer Copper Metallization
- New Triple-Oxide Technology
 - Enables Lower Quiescent Power Consumption
- Exclusive Benefits:
 - Best Cost
 - Greatest Performance
 - Lowest Power
 - Highest Density

Enables 2x Performance, 2x Capacity, ½ Power, ½ Cost

New ASMBL™ Columnar Architecture
- Revolutionary Advance in FPGA Architecture
- Enables “Dial-In” Resource Allocation Mix
 - Logic, DSP, BRAM, I/O, MGT, DCM, PowerPC
- Enabled by Flip-Chip Packaging Technology
 - I/O Columns Distributed Throughout the Device

Three Virtex-4 Platforms

<table>
<thead>
<tr>
<th>Resource</th>
<th>LX</th>
<th>FX</th>
<th>SX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic</td>
<td>14K-200K LCs</td>
<td>12K-140K LCs</td>
<td>23K-35K LCs</td>
</tr>
<tr>
<td>Memory</td>
<td>0.9-6Mb</td>
<td>0.6-10Mb</td>
<td>2.1-5.7Mb</td>
</tr>
<tr>
<td>DCMs</td>
<td>4-12</td>
<td>4-20</td>
<td>4-3</td>
</tr>
<tr>
<td>DSP Slices</td>
<td>32-96</td>
<td>32-192</td>
<td>128-512</td>
</tr>
<tr>
<td>SelectIO</td>
<td>240-960</td>
<td>240-960</td>
<td>530-880</td>
</tr>
<tr>
<td>RocketIO</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>PowerPC</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Ethernet MAC</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>System Monitor</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>0-1+ADC</td>
<td>0-1+ADC</td>
<td>0-1+ADC</td>
<td>0-1+ADC</td>
</tr>
</tbody>
</table>

Choose the Platform that Best Fits the Application

Imperial College, 2005

Digital System Design