
DIGITAL SYSTEM DESIGN 5.1

pykc

§5 - MULTIPLIER CIRCUITS

5.1 Introduction

Arithmetic circuits form an important class of circuits in digital systems. In this

section, we will examine simple complementers, different types of adder/subtractor

circuits and their trade-off between speed and complexity, multiplier circuits and

floating point circuits. Arithmetic circuits alone could form a 3rd year course on its

own, therefore the treatment here will be selective (but at a reasonably detail level).

However, circuits will be treated at gate levels or above, but not at transistor level.

Emphasis will be placed in the techniques, algorithms and ideas, not circuit tricks. In

this chapter, I assume that you known two's complement representation of numbers

and the basic ideas behind binary addition and subtraction. If you have forgotten,

consult 1st or 2nd year notes.

Perhaps the best book on this subject is "Computer Arithmetics - Principles,

Architecture and Design" by K Kwang. This book covers all the materials discussed

in this section and beyond.

Another recently published book in this topic is “Computer Arithmetic – Algorithms

and Hardware Designs” by Behrooz Parhami. This book covers almost all aspects of

computer arithmetics and circuits.

DIGITAL SYSTEM DESIGN 5.2

pykc

5.2 Multipliers

5.2.1 Unsigned Multiplication

Unsigned multiplication can be done using serial addition as shown below:

1 0 1 0
0 1 1 1

0 1 0 1 0
1 0 1 0

0 1 1 1 1
1 0 1 0

1 0 0 0 1
0 0 0 0

0 1 0 0 0

0 1 0 0 0 1 1 0

Yu = y3:y2:x1:y0
Xu = x3:x2:x1:x0

x0 * Yu
2 x1 * Yu

4 x2 * Yu

8 x3 * Yu

10
7

10
20

=30
40

=70
0

=70

Multiplicant

Multiplier

zero extended

carry out

At each stage, starting from the LSB of the multiplier, a one-bit multiplier is perform

to give a partial product. This is shifted right by one bit before adding to the next bit

multiplication. Note that we need 4-bit adder at each stage, yielding 5 bit results. The

carry out is used to provide the fifth bit. At each stage, the LSB of the addition

becomes one bit of the answer.

Σ

R

C1

1DCout

3

0

A+B

&

&

&

&

3

3

0

0

2

1
2

1

1

2

A

B
Z3

Z2

Z1

Z7

Z6

Z5

Z4

Z7

Z6

Z5

Z4

Z3

Z2

Z1

Z0

RESET

CLOCK
XBIT

y3

y2

y1

y0

x3:x2:x1:x0

S4

S3

S2

S1

S0

Figure 5.16 4-bit Unsigned Serial-add Multiplier

DIGITAL SYSTEM DESIGN 5.3

pykc

The operation of this circuit is:

• Reset the Flip-flops

• XBIT = x0; CLOCK

• XBIT = x1; CLOCK

• XBIT = x2; CLOCK

• XBIT = x3; CLOCK

• Answer: Z7:0 = Xu * Yu

At each stage, most significant 4 bits S4:1 are saved and fed back to adder as Z7:4. S0

becomes part of the final answer.

5.2.2 Signed Multiplication

Before considering signed multiplication, let us first examine 4-bit signed addition.

Adding two 4 bit numbers gives a 5-bit sum. For an unsigned adder, the carry out

provides the fifth bit. Unfortunately, this bit is wrong for signed addition if the sign of

the two numbers are different. Therefore, to ensure that a 4-bit signed addition gives

the correct 5 bit result, we actually need a 5-bit adder as shown in figure 5.1. The

input numbers must first be sign extended to form a 5-bit signed number before the

addition.

4
3

0

4
3

0
B

A
Cout

A+B

A3:0

B3:0 5
S4:0

ΣA3

B3

sign extension

not usedCout

A+B

A3:0

B3:0 4
S3:0

Σ

S44

4

4-bit Unsigned Adder 4-bit Signed Adder

Figure 5.1 Unsigned and Signed Addition

Similar to unsigned multiply, signed multiplication can be done using serial addition

as shown below:

DIGITAL SYSTEM DESIGN 5.4

pykc

1 0 1 0
0 1 1 1

1 1 1 0 1 0
1 1 0 1 0

1 1 0 1 1 1
1 1 0 1 0

1 1 0 1 0 1
0 0 0 0 0

1 1 0 1 0

1 1 0 1 0 1 1 0

Ys = y3:y2:x1:y0
Xs = x3:x2:x1:x0

x0 * Ys

2 x1 * Ys

4 x2 * Ys

- 8 x3 * Ys

-6
7

-6

-12

= -18
-24

= -42
0

= -42

Multiplicant

Multiplier

sign extended

signed subtract

0 0 0 0 0
1 1 0 1 0

signed addition

The procedure here is similar to that for unsigned multiply except that:

• Each input to the 4-bit sign adder must be sign extended by 1 bit

• The last operation must be a subtraction, not an add.

Therefore the circuit need to use a 4-bit signed adder/subtractor as shown in figure

5.2.

Σ

R
C1

1D

3

0

A+B

&

&

&

&

3

3

0

0

2

1
2

1

1

2

A

B
Z3

Z2

Z1

Z7

Z6

Z5

Z4

Z7

Z6

Z5

Z4

Z3

Z2

Z1

Z0

RESET

CLOCKXBIT

y3

y2

y1

y0

x3:x2:x1:x0

4

+/1
SUB

SUBTRACT

R4

R3

R2

R1

R0

Figure 5.2 4-bit Signed Serial-add Multiplier

The operation of this circuit is:

• Reset the Flip-flops

• XBIT = x0; SUBTRACT=0; CLOCK

• XBIT = x1; SUBTRACT=0; CLOCK

DIGITAL SYSTEM DESIGN 5.5

pykc

• XBIT = x2; SUBTRACT=0; CLOCK

• XBIT = x3; SUBTRACT=1; CLOCK

• Answer: Z7:0 = Xs * Ys

5.2.3 Recoded Multipliers - Booth Algorithm

1 0 1 0
0 1 1 1

0 0 0 1 1 0
0 0 0 0 0

0 0 0 0 1 1
0 0 0 0 0

0 0 0 0 0 1
1 1 0 1 0

1 1 0 1 0 1 1 0

Ys = y3:y2:x1:y0
Xs = x3:x2:x1:x0

-6
7

0 0 0 0 0
0 0 1 1 0 Ys * (-x0)

+8Ys * (-x3+x2)

+4Ys * (-x2+x1)

+2Ys * (-x1+x0)

= -Ys

= 0

= 0

= +8Ys

Ys * (-8x3+4x2+2x1+x0)

-

0

0

+

Operation

Instead of treating the MSB differently from all other bits, it is possible to rearrange

the binary bits and code them differently. Booth Algorithm is one of many algorithms

that group together a number of bits in the multiplier and perform a recoding of the

binary bits before the actual addition/subtraction. The table above shows how the

Booth algorithm work:

• At each stage, we add Ys * 2i * (-xi + xi-1)

• We assume that x-1 = 0

• The algorithm is defined by the following equation:

DIGITAL SYSTEM DESIGN 5.6

pykc

2

2 2

2 2

2 2 2 2

2 2 2

2 2

1
0

1

1
0

1

0

1

1

1

2

0

1

1
1

0

2
1

0

2
0

1

1
1

1

0

2

1
1

0

2

i
i i

i

N

i
i

i
i

i

N

i

N

i
i

i
i

i

N

i

N

N
N

i
i

i

N
i

i
i

N

N
N

i i
i

i

N

N
N

i
i

i

N

x x

x x

x x

x x x x

x x

x x

()

()

− +

= − +

= − +

= − − + +

= − + − +

= − +

−
=

−

−
=

−

=

−

+

=−

−

=

−

−
−

=

−
+

=

−

−

−
−

+

=

−

−
−

=

−

∑

∑∑

∑∑

∑ ∑

∑

∑

xi xi-1 (-xi+xi-1) Comments

0 0 0 Do nothing

0 1 +1 Add Ys

1 0 -1 Subtract Ys

1 1 0 Do nothing

The implementation of the Booth Algorithm is shown in figure 5.3. It is very similar

to the previous implementation, but we now remove the need to treat the last cycle as

special.

An extra register is need to store PREVBIT. It is initialized to 0 (with RESET).

The XOR gate and the AND gates are used to implement the above coding table.

Σ

R
C1

1D

3

0

A+B

&

&

&

&

3

3

0

0

2

1
2

1

1

2

A

B
Z3

Z2

Z1

Z7

Z6

Z5

Z4

Z7

Z6

Z5

Z4

Z3

Z2

Z1

Z0

RESET

CLOCK

XBIT

y3

y2

y1

y0

x3:x2:x1:x0

4

+/1
SUB

R4

R3

R2

R1

R0

PREVBIT

XBIT PREVBIT

=1

Figure 5.3 Booth Serial Multiplier

DIGITAL SYSTEM DESIGN 5.7

pykc

5.2.4 Multi-bit Multiplier

All the circuits considered so far handle only one bit multiplication at each clock

cycle. There are no reasons why we could not deal with two (or more) bits at a time.

Shown in figure 5.4 is a 2-bit serial multiplier for unsigned numbers:

Carry
Save
Adder

A

B

C

Sum

Cout

P

Q

P+QCarry
Propage

Adder

&

&

L
A
T
C
H

Yu

2*Yu
n+1

n+2
Zn+1:0

n+2

n+1
n+1

n+1

n+1

n+1

n+1

Xeven

Xodd

Xeven = x2k-2 : : x2 : x0

Xodd = x2k-1 : : x3 : x1
n = 2k where n = no of data bits

Figure 5.4 2-bit serial multiplier

5.2.5 Modified Booth Algorithm

We can combine the multi-bit idea with the original Booth algorithm as shown below:

Booth Algorithm: bit i 2 1
i

i ix x()− + −

bit i+1 2 1
1

i
i ix x+
+− +()

Modified Booth: bit i & i+1
2 2

2 2

1
1

1

1 1

i
i i

i
i i

i
i i i

x x x x

x x x

() ()

()

− + + − +

= − + +
−

+
+

+ −

xi+1 xi xi-1 -2xi+1+xi+xi-1 Comments

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Therefore we need a circuit that can add/subtract either 0, Ys or 2*Ys. Such a circuit

can be implemented as shown in figure 5.5.

DIGITAL SYSTEM DESIGN 5.8

pykc

• The multiplex chooses either to double Y3:0 or not.

• R5:0 = X3:0 ± k * Y3:0, where k=1 or 2.

• We need 6 bit adder output to accommodate the answer without overflow.

• X3:0 is sign-extended to make it 5 bits, the same as kY.

SUB

4

0

P

5

0

P+Q

+/-

1
1

1
1

1
1

1
1

G1
MUX

SUB

Y3

Y2

Y1

Y0
0

X3
X2
X1
X0

R5
R4
R3
R2
R1
R0

DOUBLE
4

0

Q

SUB

k=2

3

0

Q

3

0

P

5

0

P+kQ

+/- k

SUB

DOUBLE

Y3
Y2
Y1
Y0

X3
X2
X1
X0

R5
R4
R3
R2
R1
R0

Figure 5.5 Scaling Add/Subtract Circuit

DIGITAL SYSTEM DESIGN 5.9

pykc

The circuit to implement the modified Booth algorithm is shown in figure 5.6. This

circuit basically implement the following function:

XBIT1 XBIT0 PREVBI

T

Mult. factor

0 0 0 0

0 0 1 +1

0 1 0 +1

0 1 1 +2

1 0 0 -2

1 0 1 -1

1 1 0 -1

1 1 1 0

We can derive the following equations from the above table:
SUB XBIT

DOUBLE XBIT PREVBIT

ZERO XBIT XBIT PREVBIT

XBIT XBIT DOUBLE

=

= ⊕
= = =

= ⊕ •

1

0

1 0

1 0

()

SUB

k=2

Q

3

0

P

+/- k

Z7
Z6
Z5
Z4

R5
R4
R3
R2
R1
R0

&

&

&

&

&

=1

=1
Z7
Z6
Z5
Z4
Z3
Z2
Z1
Z0
PREVBIT

Z3
Z2

XBIT1

XBIT1

XBIT0

PREVBIT

Y3

Y2

Y1

Y0

3

0

1D

C1
RRESET

CLOCK

5

0

P+kQ

Figure 5.6 Modified Booth Multiplier Circuit

The functional sequence for this circuit is:

• RESET

• XBIT1:0 = X1:0; CLOCK

• XBIT1:0 = X3:2; CLOCK

5.2.6 Array Multiplier

DIGITAL SYSTEM DESIGN 5.10

pykc

For fast multiplication, an array of 1-bit multipliers (AND gate) and full-adders can be

used. First, let us examine a 4x4 unsigned product:-

a3 a2 a1 a0 = A

X b3 b2 b1 b0 = B

a3b0 a2b0 a1b0 a0b0
a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2
+ a3b3 a2b3 a1b3 a0b3

p7 p6 p5 p4 p3 p2 p1 p0 P = A x B

Next, let us design a 1-bit multiply cell as shown below (figure 5.7). Each cell has a

full-adder and an AND gate. The signal feed through shown here helps to build a

multiplier as a 2-D array:-

a a

b b

c a b d a b c c d

d a b d c

'

'

'

' ()

=
=
= ⋅ ⋅ + ⋅ ⋅ + ⋅
= ⋅ ⊕ ⊕

d a

b

c

a' d'

c'

b'

Σ
A B C

FA
ΣCo

&

d a

b

c

a' d'

c'

b'

=

Figure 5.7 One bit Multiply Cell

DIGITAL SYSTEM DESIGN 5.11

pykc

a0a1a2a3

b0

b1

b2

b3

p0p1p2p3p4p5p6p7

d a

b

c

a' d'

c'

b'

Σ

Figure 5.8 4 x 4 bit unsigned multiplier array

We can map the tabulated form of the 4x4 multiplication almost directly into the 2-D

array shown in figure 5.8. However, this array is slow. Assuming ∆ is the worst case

delay per cell, the total worst case delay of the array is 10∆. For a n x n bit array, the

worst case delay can be shown to be (3n-2)∆. (Why? Work it out yourself!)

Note also that the shaded cells are simpler - they only need a half adder instead of a

full adder circuit.

This array could be modified to work much faster by apply the carry-save principle.

Instead of propagating the carry length-wise, we could feed it forward diagonally as in

the carry-save adder circuit. This results in a better circuit as shown in figure 5.9.

Now the worst-case delay is only 2n,∆ which is much better than (3n-2)∆ (especially

when n is large).

This circuit can further be simplified (hence making it works faster) by replacing the

shaded cells with simpler circuits as shown in figure 5.10.

DIGITAL SYSTEM DESIGN 5.12

pykc

a0a1a2a3

b0

b1

b2

b3

p0p1p2p3p4p5p6p7

HA FA FA HA

d a

b

c

a' d'

c'

b'

Σ

Figure 5.9 Carry-save 4x4 unsigned multiplier array

&

a0a1a2a3

b0

b1

b2

b3

p0p1p2p3p4p5p6p7

&

FA FA HA

&

d a

b

c

a' d'

c'

b'

Σ

&&

&

&

Figure 5.10 Simplied carry-save unsigned multiplier array

DIGITAL SYSTEM DESIGN 5.13

pykc

5.2.7 2's Complement Multiplier Array

To handle 2's complement signed multiplication, one of many algorithms is depicted

in the table below. As before, let us consider 4 bit numbers. The lower 3 bits are

multiplied as in the unsigned case. The sign bits are handled separately. The bits with

negative weighting are enclosed in parenthesis. They are subtracted instead of added.

(a3) a2 a1 a0 = A

X (b3) b2 b1 b0 = B

a2b0 a1b0 a0b0
a2b1 a1b1 a0b1

+ a3b3 0 a2b2 a1b2 a0b2

(a3b2) (a3b1) (a3b0)

+ (a2b3) (a1b3) (a0b3)

(p7) p6 p5 p4 p3 p2 p1 p0 P = A x B

In order to build an array for this multiplication, we need subtract cells. The truth

table of a subtract cell is:-

X Y Bin D Bout

0 0 0 0 0

0 1 0 1 1

1 0 0 1 0

1 1 0 0 0

0 0 1 1 1

0 1 1 0 1

1 0 1 0 0

1 1 1 1 1

A subtract cell can be built from a full adder cell as shown in figure 5.11.

Σ
A

B

Cin Cout

S D

Bout

X

Y

Bin

FA
D x y B

B x y x B y B

in

out in in

= ⊕ ⊕

= ⋅ + ⋅ + ⋅

()

Figure 5.11 One bit subtractor with borrow

DIGITAL SYSTEM DESIGN 5.14

pykc

Therefore, the subtract cells in the bottom two rows of the multipliers become (figure

5.12):-

d a

b

c

a' d'

c'

b'

Σ=
A B C

FA
ΣCo

&

d a

b

c

a' d'

c'

b'

+
-
-

Figure 5.12 Multiplier cell with subtraction

The detail arrangement of the array is left as an exercise for you.

