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Introductions & Sources

We will consider a number of issues related to bus architectures in digital 
systems.
Useful references:
• “Bus Architecture of a System on a Chip with User-Configurable System 

Logic”, Steven Winegarden, IEEE JOURNAL OF SOLID-STATE CIRCUITS, 
VOL. 35, NO. 3, MARCH 2000, p425-433.

• “AMBA: ENABLING REUSABLE ON-CHIP DESIGNS”, David Flynn, IEEE 
Micro, July/August 1997.

• AMBA™ Specification (Rev 2.0), ARM Ltd., 1999

• The CoreConnect Bus Architecture, IBM, 
http://www.chips.ibm.com/products/coreconnect

• VSI Alliance Architecture Document, version 1.0, 1997.

• Draft Chapter, “System-on-Chip”, Flynn & Luk
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Basic concepts:
Bus basics: order and broadcast properties

Communications on buses must be in strict order: serial nature of bus

It can broadcast a transaction – sending to multiple components simultaneously
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Basic concepts:
Cycles, messages and transactions

Buses operate in units of cycles, Messages and 
transactions.
• Cycles: A message requires a number of clock cycles to be sent from 

sender to receiver over the bus.
• Message: These are logical unit of information. For example, a write 

message contains an address, control signals and the write data.
• Transaction: A transaction consists of a sequence of messages 

which together form a transaction. For example, a memory read 
requires a memory read message and a reply with the requested 
data.
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Synchronous vs Asynchronous
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Basic concepts:
Typical Source Synchronous Data Transfer
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Basic concepts:
Bus arbitration

Only one bus master can control the us.

Need some way of deciding who is master – may use a bus arbiter:
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Basic concepts:
Bus pipelining

A transaction may take multiple cycles

Overlap multiple transaction through pipelining:
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Basic concepts:
Split-transaction bus

A bus transaction can be divided into two or more phases, e.g.
• “Request” phase

• “Reply” phase

These can be split into two separate sub-transactions, which may or may 
not happen consecutively.  If split, these must compete for the bus by 
arbitration.
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Basic concepts:
Split-transaction bus
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Basic concepts:
Pipelined only bus vs split-transaction bus

Topic 10 Slide 12PYKC 6-Mar-08 E3.05 Digital System Design

Basic concepts:
Burst transfer mode



Topic 10 Slide 13PYKC 6-Mar-08 E3.05 Digital System Design

Bus bandwidth
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Bus hierarchy
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AMBA bus

Based around ARM processor
• AHB – Advanced High-Performance Bus

Pipelining of Address / Data
Split Transactions
Multiple Masters 

• APB – Advanced Peripheral Bus
Low Power / Bandwidth Peripheral Bus
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AMBA Bus Design Goals

Encourages modular design and design reuse
Well defined interface protocol, clocking and reset
Low-power support (helped by two-level partitioning)
On-chip test access – built-in structure for testing modules connected on 
the bus

Transactions on AHB
• Bus master obtain access to the bus
• Bus master initiates transfer

• Bus slave provides response
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AMBA bus arbitration
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Simple AHB Transfer
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AHB Transfer with wait states
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Multiple transfers with Pipelining
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Burst mode transfer (undefined length)
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Slave Transfer Responses

1. Complete transfer immediately (single cycle transfer)
2. Insert one or more wait states to allow completion
3. Signal error to indicate transfer failed
4. Back of from the bus, try later (RE-TRY or SPLIT responses)
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Retry Respnses on the AHB bus
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Advanced Peripheral Bus (APB)
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IBM CoreConnect Bus
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CoreConnect vs AMBA

Topic 10 Slide 27PYKC 6-Mar-08 E3.05 Digital System Design

Crossbar Switch Approach

Uses asynchronous channels
Different modules can run at 
different clock frequency
Globally Asychronous, Locally 
Synchronous (GALS) system
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Network-on-chip approach

Array of tiles
Each tile contains client logic and router 
logic
2-D mesh topology

Uses data packets, not wires, for 
communication
Predictable delay, and noise



 



Chapter 5

Interconnect Architectures

5.1 Introduction

SOC designs usually involve the integration of intellectual property (IP) cores, each
separately designed and verified. System integrators can maximize the re-use of design
efforts by providing a common backbone for SOC modules, to reduce costs and to
lower risks. Frequently the most important issue confronting an SOC integrator is the
method by which the IP cores are connected together.

SOC interconnect alternatives extend well beyond conventional computer buses. This
chapter provides an overview of three SOC interconnect architectures: bus, switch,
and Network-on-Chip. A number of bus architectures developed specifically for SOC
technology are then described and compared. Switch-based alternatives to bus based
interconnects are considered, especially recent trends in SOC interconnects such as
Network-on-Chip technology.

As we shall see, Network-on-Chip (NOC) is more than an alternative to bus or switch
technology. It is often described at a higher level of abstraction, hiding the underlying
physical interconnects from the designer. It is usually implemented by switch technol-
ogy, although in principle it can also be a bus. To avoid confusion, we follow current
SOC usage and refer to interconnect as a bus (usually no confusion), as a switch when
there is a crossbar visible to the designer, and as a NOC when implemented by a
switch. In the NOC case the switch is often more than a crossbar and could consist of
a distributed interconnect or a multistage switching network.

There is a great deal of bus and computer interconnect literature. The units being
connected are sometimes referred to as agents (in buses) or nodes (in general intercon-
nect literature); we simply use the term units. Given that, at least at the current time,
SOCs only require a small number of units to be interconnected, the chapter provides
a simplified view of the interconnect alternatives.

5.2 Overview: Interconnect Architectures

Figure 5.1 depicts a system which includes a SOC module. The SOC module typically
contains a number of IP blocks, one or more of which are processors. In addition, there
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2 Chapter 5 Interconnect Architectures

are various types of on-chip memory serving as cache, data or instruction storage.
Other IP blocks serving application-specific functions, such as graphics processors,
video codecs and network control units, are integrated in the SOC.

The IP blocks in the SOC module need to communicate with each other. External to
the SOC module are off-chip memories, off-chip peripheral devices and mass storage
devices. The cost and performance of the system therefore depends on both on-chip
and off-chip interconnect structure.

Processor
On-chip
Memory

IP Block

IP Block

Off-chip
interface

On-chip
Memory

Processor

IP Block

Off-chip
Memory

Off-chip
peripheral

Off-chip ASIC

On-chip interconnect architecture

Off-chip interconnect architecture

Figure 5.1 A simplified block diagram of an SOC module in a system context.

Choosing a suitable interconnect architecture requires the understanding of a number
of system level issues and specifications. These are:

1. Communication bandwidth: the rate of information transfer between a mod-
ule and the surrounding environment in which it operates. Usually measured
in bytes/second, the bandwidth requirement of a module dictates to a large ex-
tent the type of interconnection required in order to achieve the overall system
throughput specification.

2. Communication latency: the time delay between a module requesting data
and receiving a response to the request. Latency may or may not be impor-
tant in terms of overall system performance. For example, long latency in a
video streaming application usually has little or no effect on the user’s experi-
ence. Watching a movie that is a couple of seconds later than when it is actually
broadcast is of no consequence. In contrast, even a short latency in a two-way
mobile communication system can make it almost impossible to carry out a con-
versation.
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3. Master and slave: these concern whether a unit can initiate or react to commu-
nication requests. A master, such as a processor, controls transactions between
itself and other modules. A slave, such as memory, responds to requests from the
master. A SOC design typically would have more than one master and numerous
slaves.

4. Concurrency requirement: the number of independent simultaneous commu-
nication channels operating in parallel. Obviously the higher the concurrency,
the higher the system throughput.

5. Multiple clock domains: different IP modules may operate at different clock
and data rates. For example, a video camera captures pixel data at a rate gov-
erned by the video standard used, while a processor’s clock rate is usually deter-
mined by the technology and architectural design. As a result, IP blocks inside
an SOC often need to operate at different clock frequencies, creating separate
timing regions known as clock domains. Crossing between clock domains can
cause metastability, deadlock and synchronization problems.

Technology AMBA CoreConnect Smart Inter-
connectIP

Nexus

Company ARM IBM Sonics Fulcrum

Core Type Soft / Hard Soft Soft Hard

Architecture Multiple bus Multiple bus
with switch
fabric

Multiple bus switch fabric

Bus width 8–1024 32 / 64 / 128 16 8–128

Frequency 200MHz 100–400MHz 300MHz 1GHz

Max. BW 3GB/s 2.5–24GB/s 4.8GB/s 72GB/s

Min. latency 5ns 15ns n/a 2ns

Table 5.1 Examples of interconnect architectures [26].

Given a set of communication specifications, a designer can explore the different band-
width, latency, concurrency and clock domain requirements of different architectures
such as bus, switch, and Network-on-Chip. Some examples of these are given in Ta-
ble 5.1.

Designing the interconnect architecture for an SOC requires careful consideration of
all the factors listed above. Figure 5.2 shows a brief outline for interconnect design.
The rest of this section will provide an overview of three interconnect scheme, which
will be explored in greater detail later in this chapter.

5.2.1 Bus

The performance of a computer system is heavily dependent on the characteristics
of its interconnect architecture. A poorly designed system bus can throttle the trans-
fer of instructions and data between memory and processor, or between peripheral
devices and memory. This communication bottleneck is the focus of attention among
many microprocessor and system manufacturers who, over the last three decades, have
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Determine communication
specification of individual

module in the system

 � Limited no. of masters (<5)
 � Small no. of modules (<20)
 � Limited or no concurrency
 � Very few clock domains

(<4)
 � Low risk with standard IPs

 � Limited no. of masters (<10)
 � Moderate no. of modules

(<50)
 � Some concurrent traffic
 � Small/medium no. of clock

domains (<10)

 � Large no. of masters (>10)
 � Large no. of modules (>50)
 � Plenty of concurrent and

unpredictable traffic
 � Large no. of clock domains

(>10)

Mostly
proprietary IP
blocks: Consider
either proprietary
busses or
standard busses

Integration of IP
blocks from
multiple vendors:
Consider
standard busses
or bus wrappers

Mostly synchronous
modules with small
no. of clock
domains: Consider
synchronous
crossbar switch

Many clock domains
(>4): Consider GALS
crossbar switch (see
Section on switches)

Choose network topology
Choose communication
protocol
Choose routing strategy

Consider bus
interconnection

method

Consider
crossbar
switches

Consider
network-on-chip

(NoC)

Understand requirements

Interconnect implications

Design approaches

Some possible requirements

Figure 5.2 An outline for interconnect design.

adopted a number of bus standards. These include the popular VME bus and the Intel
Multibus-II. For personal computers, the evolution includes the ISA bus, the EISA bus
and the now prevalent PCI and PCI Express (PCI-X) buses. All these bus standards
are designed to connect together integrated circuits on a printed circuit board (PCB) or
PCBs in a system.

While these bus standards have served the computing community well, they are not
particularly suited for SOC technology. For example, all such system level buses are
designed to drive a backplane, either in a rack-mounted system or on a computer moth-
erboard. This imposes numerous constraints on the bus architecture. For a start, the
number of signals available is generally restricted by the limited pin count on an IC
package or the number of pins on the PCB connector. Adding an extra pin on a pack-
age or a connector is expensive. Furthermore, the speed at which the bus can operate is
often limited by the high capacitive load on each bus signal, the resistance of the con-
tacts on the connector, and the electromagnetic noise produced by such fast switching
signals traveling down a PCB track.

Table 5.2 gives a comparison of a number of different bus interconnect architectures
together with size and speed statistics for a typical bus slave.

Standard Speed (MHz) Area (rbe)

AMBA 100 172900

CoreConnect 80 158900

Table 5.2 Comparison of bus interconnect architectures [30].
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Figure 5.3 A switch-based interconnect scheme forming a Globally Asyn-
chronous/Locally Synchronous (GALS) system [9].

5.2.2 Switch

While bus interconnect has been the predominant architecture for SOC interconnec-
tions, it suffers from a number of drawbacks. Even a well-designed bus-based system
may suffer from data transfer bottlenecks, limiting the performance of the entire sys-
tem. It is also not inherently scalable. As more and more modules are added to a
bus, not only does data congestion increase, but power consumption also rises due to
the increased load presented to the bus driver circuits. Switch based interconnection
schemes have the potential to avoid some of these limitations.

A switch-based interconnection scheme uses either a centralized crossbar switch or a
number of distributed switches [8] to connect together SOC modules. Apart from the
advantage of avoiding traffic congestion, a switch-based scheme may allow modules
to operate at different clock frequencies as well as alleviating the bus loading problem.

Figure 5.3 shows a crossbar-based interconnect which connects some locally syn-
chronous blocks on the same chip [9]. The crossbar switch is fully asynchronous.
Inside the chip, clock domain converters are used to bridge the asynchronous intercon-
nect to the synchronous blocks, forming a globally asynchronous/locally synchronous
(GALS) system.

5.2.3 Network-on-Chip

In the Network-on-Chip (NOC) interconnection scheme, units are connected via a ho-
mogeneous and scalable switching system. Communications between the units are
through data transfers sometimes called packets. In a network there can be more than
one path for communication between blocks. Such a network must therefore include
schedules or dynamic decision making on the routing of communication traffic. Fig-
ure 5.4 shows an example of a NOC where IP blocks are connected together via a
network of switches. One key feature of a NOC interconnect architecture is the use of
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Figure 5.4 A NOC and Switch example.

a layered communication scheme, separating the transaction layer (which is specific
to the application), the transport layer (which handles the packets) and the physical
layer (which deals with wires and clocks). A NOC can be scalable, and the layered
approach also ensures that it can easily be adapted to the latest silicon process technol-
ogy. A NOC system can easily migrate to a newer and faster technology by changing
the design of the physical layer alone.

5.3 Bus: Basic Architecture

5.3.1 Arbitration and Protocols

Conceptually the bus is just wires shared by multiple units. In practice, some logic
provides an orderly use of the bus; otherwise two units may send signals at the same
time causing conflict. When a unit has exclusive use of the bus, the unit is said to
own the bus. Units can be either potentially master units that can request ownership
or slave units that are passive and only respond to requests. A bus master is the unit
that initiates communication on a computer bus or input/output paths. In an SOC, a
bus master is a component within the chip, such as a processor. Other units connected
to an on-chip bus, such as I/O devices and memory components, are the “slaves”. The
bus master controls the bus paths using specific slave addresses and control signals.
Moreover, the bus master also controls the flow of data signals directly between the
master and the slaves.

A process called arbitration determines ownership. A simple implementation has a
centralized arbitration unit with an input from each potential requesting unit. The
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arbitration unit then grsnts bus ownership to one requesting unit, as determined by the
bus protocol.

A bus protocol is an agreed set of rules for transmitting information between two or
more devices over a bus. The protocol determines the following:

• the type and order of data being sent;

• how the sending device indicates that it has finished sending the information;

• the data compression method used, if any;

• how the receiving device acknowledges successful reception of the information;

• how arbitration is performed to resolve contention on the bus and in what prior-
ity, and the type of error checking to be used.

5.3.2 Bus Bridge

A bus bridge is a module that connects together two buses, which are not necessarily
of the same type. A typical bridge can serve three functions:

1. If the two buses use different protocols, a bus bridge provides the necessary
format and standard conversion.

2. A bridge is inserted between two buses to segment them, and keep traffic con-
tained within the segments. This improves concurrency: both buses can operate
at the same time.

3. A bridge often contains memory buffers and the associated control circuits that
allow write posting. When a master on one bus initiates a data transfer to a slave
module on another bus through the bridge, the data is temporary stored in the
buffer, allowing the master to proceed to the next transaction before the data is
actually written to the slave. By allowing transactions to complete quickly, a bus
bridge can significantly improve system performance.

5.4 Analytical Bus Models

The nature of the bus transaction depends on the bus structure. Multiple bus users must
be arbitrated for access to the bus in any given cycle. Thus, arbitration can be part of
the bus transaction, such as having the request cycle followed by the acknowledge
cycle, or it can be performed by adding bus control lines and associated logic.

5.4.1 Bus Varieties

Buses may be unified or split (address and data). The unified bus is occupied with both
address and data; the split bus has separate buses for each function.

Moreover, the buses may be tenured. This refers to buses that are occupied only while
delivering addresses or data. Such buses assume that the receivers buffer the messages
and create separate address and data transactions.
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EXAMPLE 5.1 BUS EXAMPLES

Suppose we have a bus with transmission delay of one processor cycle and memory
with 4 cycle access. Memory requires an additional 3 cycles to transmit a line. (m = 1
with page mode.)

(a) Simple bus. This might have the following bus transaction time:

re
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Taccess line accessac
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(b) Bus with arbitration support:

Taccess line accessad
dr
es
s

(c) Tenured split bus:

5 cycles Bus transit<

addr

<< <

Address
bus

Data bus

(d) Tenured split bus (width 16B), with a 1 cycle bus transaction time:

9 cycles< <

Address
bus

Data bus 

Cases (c) and (d) are interesting, since the current bus capacity exceeds the memory
bandwidth; for instance in case (d), 4w in 8 cycles for memory, and 4w in one cycle for
the bus. In both of these cases, the “bus”-memory situation is memory limited since
that is where the contention will develop. In these cases, the bus time is added to the
memory access time, and bus contention is ignored.

♦

5.4.2 Shared Bus

Whether we need to analyze the bus as a source of contention depends on its offered
bandwidth (or offered occupancy) relative to the memory bandwidth. As contention
and queues develop at the “bottleneck” in the system, we treat the most limiting re-
source as the source of the contention, and other parts of the system simply as delay
elements. Thus buses must be analyzed for contention when they are more restrictive
(have less available bandwidth) than memory.

Buses usually have no buffering (queues), and access delays cause immediate system
slowdown. The analysis on the effects of bus congestion is made based on the access
patterns.

Generally there are two types of access patterns:
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1. Requests without immediate resubmissions. The denied request returns with
the same arrival distribution as the original request. Once a request is denied,
“something else” happens to delay the resubmission of the request.

2. Requests are immediately resubmitted. This is a more typical case, when mul-
tiple independent processors access a common bus. A denied request “sits on”
the bus. It is immediately resubmitted. The processor is idle until the request is
honored and serviced.

5.4.3 Simple Bus Model: without Resubmission

In the following, we assume that each request occupies the bus for the same service
time (e.g. Tline access). Even if we have two different types of bus users (e.g. word
requests and line requests on a single line, or (dirty) double line requests), most cases
are reasonably approximated by simple computation of the per-processor average (of-
fered) bus occupancy, ρ, given by:

ρ =
bus transaction time

processor time + bus transaction time

The processor time is the mean time the processor needs to compute before making a
bus request. Of course, it is possible for the processor to overlap some of its compute
time with the bus time. In this case, the processor time is the net non-overlapped time
between bus requests. In any event, ρ ≤ 1.

The simplest model for n processors accessing a bus is given by:

Prob (processor does not access bus) = 1 − ρ

Prob (n processors do not access bus) = (1 − ρ)n

Prob (bus is busy) = 1 − (1 − ρ)
n

= Bus bandwidth = Bus B (ρ, n)

and
Bw =

Bus B (ρ, n)

Tbus

and the achieved bandwidth per processor (ρa) is given by:

nρa = B (ρ, n)

ρa =
B (ρ, n)

n

5.4.4 Bus Model with Request Resubmission

A model that supports request resubmission involves a more complex analysis, and re-
quires an iterative solution. There are several solutions, each providing similar results.
The solution provided by Hwang and Briggs [16] is an iterative pair of equations:

a =
ρ

ρ + (ρa/ρ) (1 − ρ)
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and
nρa = 1 − (1 − a)

n

where a is the actual offered request rate. To find a final ρa, initially set a = ρ to begin
the iteration. Convergence usually occurs within four iterations.

5.4.5 Using the Bus Model: Computing the Offered Occupancy

The model in the preceding section does not distinguish among types of transactions.
It just requires the mean bus transaction time, which is the average number of cycles
that the bus is busy managing a transaction. Then the issue is finding the offered
occupancy, ρ.

The offered occupancy is the fraction of the time that the bus would be busy if there
were no contention among transactions (bounded by 1.00). In order to find this, we
need to determine the mean time for a bus transaction and the compute time between
transactions.

The nature of the processor initiating the transaction is another factor. Simple pro-
cessors make blocking transactions. In this case the processor is idle after the bus
request is made and resumes computation only after the bus transaction is complete.
The alternative for more complex processors is a buffered (or non blocking) transac-
tion. In this case the processor continues processing after making a request, and may
indeed make several requests before completion of an initial request. Depending on
the system configuration there are three common cases:

1. A single bus master with blocking transactions. In this case there is no bus
contention as the processor waits for the transaction to complete. Here the
achieved occupancy, ρa, is the same as the offered occupancy, and ρ = ρa =
(bus transaction time)/(compute time + bus transaction time).

2. Multiple (n) bus masters with blocking transactions. In this case the offered
occupancy is simply nρ where ρ is as in case 1. Now contention can develop so
we use our bus model to determine the achieved occupancy, ρa.

Example. Suppose a processor has bus transactions that consist of cache line transfers.
Assume that 80% of the transactions move a single line and occupy the bus for 20
cycles and 20% of the transactions move a double line (as in dirty line replacement)
which takes 36 cycles. The mean bus transaction time is 23.2 cycles. Now assume that
a cache miss (transaction) occurs each 200 cycles.

In case (1) the bus is occupied: ρ = ρa = 23.2/223.2 = 0.10; there is no contention,
but the bus causes a system slow down, as discussed below.

In case (2) suppose we have 4 processors. Now the offered occupancy is ρ = 0.104
and we use our model to find the contention time. Initially we set a = ρ = .104,
nρa = 1− (1− a)n = 1− (1− .104)4; now we find ρa and substitute the value of ρa

for a and continue.

So initially ρa = 0.089; after the next iteration ρa = 0.010; and after several iterations
ρa = 0.095. We always achieve less than what is offered and the difference is delay
due to contention. So:

ρa = 0.095 =
bus transaction time

compute time + bus transaction time + contention time
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Solving for the contention time, we get about 21 cycles.

5.4.6 Effect of Bus Transactions and Contention Time

There are two separate effects of bus delays on overall system performance. The first is
the obvious case of blocking which simply inserts a transaction delay into the program
execution. The second effect is due to contention. Contention reduces the rate of
transaction flow into the bus and memory. This reduces performance proportionally.

In the case of blocking the processor simply slows down by the amount of the bus
transaction. So the relative performance compared to an ideal processor with no bus
transactions is,

Relative Performance =
compute time

compute time + bus transaction time

In the case (1) example the processor slows down by 200/223.3 = 0.896.

Contention, when present, adds additional delay. In case (2) the individual processor
slows down by 200/(223.2 + 21) = 0.819 The result of contention is the simply slow
down the system (without contention) by the ratio of ρa/ρ . The supply of transactions
is reduced by this ratio.

5.5 SOC Standard Buses

The two most commonly used SOC bus standards are the AMBA bus developed by
ARM, and the CoreConnect bus developed by IBM. The latter has been adopted in
Xilinx’s Virtex platform FPGA families.

5.5.1 AMBA

The Advanced Microcontroller Bus Architecture (AMBA), introduced in 1997 had its
origin from the ARM processor, one of the most successful SOC processors used in
industry. The AMBA bus is based on traditional bus architecture employing two levels
of hierarchy. Two buses are defined in the AMBA specification [4]:

• The Advanced High-performance Bus (AHB) is designed to connect embedded
processors, such as an ARM processor core, to high-performance peripherals,
DMA controllers, on-chip memory and interfaces. It is a high-speed, high-
bandwidth bus architecture that uses separate address, read and write buses. A
minimum of 32 bit data operation is recommended in the standard, and data
widths are extendable to 1024 bits. Concurrent multiple master/slave operations
are supported. It also supports burst mode data transfers and split transactions.
All transactions on the AHB bus are referenced to a single clock edge, making
system level design easy to understand.

• The Advanced Peripheral Bus (APB) has lower performance than the AHB bus,
but is optimized for minimal power consumption and has reduced interface com-
plexity. It is designed for interfacing to slower peripheral modules.
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A third bus, the Advanced System Bus (ASB), is an earlier incarnation of the AHB,
designed for lower performance systems using 16/32 bit microcontrollers. It is used
where cost, performance and complexity of the AHB is not justified.

The AMBA bus was designed to address a number of issues exposed by users of the
ARM processor bus in SOC integration. The goals achieved by its design are [13]:

1. Modular design and design reuse. Since the ARM processor bus interface is ex-
tremely flexible, inexperienced designers could inadvertently create inefficient
or even unworkable designs by using ad hoc bus and control logic. The AMBA
specification encourages a modular design methodology that supports better de-
sign partitioning and design reuse.

2. Well-defined interface protocol, clocking and reset. AMBA specifies a low-
overhead bus interface and clocking structure that is simple yet flexible. The
performance of the AMBA bus is enhanced by its multi-master, split transaction
and burst mode operations.

3. Low-power support. One of the attractions of the ARM processor when com-
pared with other embedded processor cores is its power efficiency. The two-level
partitioning of the AMBA buses ensures energy-efficient designs in the periph-
eral modules which fits well with the low-power CPU core.

4. On-chip test access. AMBA has an optional on-chip test access methodology
that reuses the basic bus infrastructure for testing modules that are connected to
the bus.

The Advanced High-Performance Bus (AHB)

Figure 5.5 depicts a typical system using the AMBA bus architecture. The AHB forms
the system backbone bus on which the ARM processor, the high-bandwidth memory
interface and RAM, and the Direct Memory Access devices reside. The interface be-
tween the AHB bus and the slower APB bus is through a bus bridge module.

Figure 5.5 A typical AMBA bus based system [13].

The AMBA AHB bus protocol is designed to implement a multi-master system. Unlike
most bus architectures designed for PCB based systems, the AMBA AHB bus avoids
tristate implementation by employing a central multiplexer interconnect scheme. This
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method of interconnect provides higher performance and lower power than using tris-
tate buffers. All bus masters assert the address and control signals, indicating the type
of transfer each master requires. A central arbiter determines which master has its ad-
dress and control signal routed to all the slaves. A central decoder circuit selects the
appropriate read data and response acknowledge signal from the slave that is involved
in the transaction. Figure 5.6 depicts such a multiplexer interconnect scheme for a
system with three masters and four slaves.

Figure 5.6 Multiplexor interconnection for a 3-masters/4-slaves system [4].

Transactions on the AHB bus involve the following steps:

• Bus master obtains access to the bus - this process begins with the master as-
serting a request signal to the arbiter. If more than one master simultaneously
requests the control of the bus, the arbiter determines which of the requesting
masters will be granted the use of the bus.

• Bus master initiates transfer - a granted bus master drives the address and control
signals with the address, direction and width of the transfer. It also indicates
whether the transaction is part of a burst in the case of burst mode operation. A
write data bus operation moves data from the master to a slave, while a read data
bus operation moves data from a slave to the master.

• Bus slave provides a response - a slave signals to the master the status of the
transfer such as whether it was successful, if it needs to be delayed, or that an
error occurred.

Figure 5.7a depicts a basic AHB transfer cycle. An AHB transfer consists of two dis-
tinct phases: the address phase and the data phase. The master asserts the address and
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Figure 5.7 A simple AHB transfer [4].

control signals on the rising edge of HCLK during the address phase, which always
lasts for a single cycle. The slave then samples the address and control signals and
responds accordingly during the data phase to a data read or write operation, and indi-
cates its completion with the HREADY signal. A slave may insert wait states into any
transfer by delaying the assertion of HREADY as shown in Figure 5.7b. For a write
operation, the bus master holds the data stable throughout the extended data cycles.
For a read transfer the slave does not provide valid data until the last cycle of the data
phase.

The AHB bus is a pipelined (tenured) bus. Therefore the address phase of any trans-
fer can occur during the data phase of a previous transfer. This overlapping pipeline
feature allows for high performance operation.

The Advanced Peripheral Bus (APB)

The Advanced Peripheral Bus (APB) is optimized for minimal power and low com-
plexity instead of performance. It is used to interface to any peripherals which are low
bandwidth.

The operation of the APB is straightforward, controlled by a three-state finite-state
machine.

5.5.2 CoreConnect

As in the case of AMBA bus, IBM’s CoreConnect Bus is an SOC bus standard de-
signed around a specific processor core, the PowerPC, but it is also adaptable to other
processors. The CoreConnect Bus and the AMBA bus share many common features.
Both have a bus hierarchy to support different levels of bus performance and com-
plexity. Both have advanced bus features such as multiple master, separate read/write
ports, pipelining, split transaction, burst mode transfer and extendable bus width.
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Figure 5.8 A CoreConnect based SOC [17].

The CoreConnect architecture provides three buses for interconnecting cores, library
macros, and custom logic:

• Processor Local Bus (PLB)

• On-Chip Peripheral Bus (OPB)

• Device Control Register (DCR) Bus

Figure 5.8 illustrates how the CoreConnect architecture can be used in an SOC sys-
tem built around a PowerPC. High performance, high bandwidth blocks such as the
PowerPC 440 CPU core, PCI-X bus bridge and PC133/DDR133 SDRAM Controller
are connected together using the PLB, while the OPB hosts lower data rate on-chip
peripherals. The daisy-chained DCR bus provides a relatively low-speed data path for
passing configuration and status information between the PowerPC 440 CPU core and
other on-chip modules.

The Processor Local Bus (PLB)

The PLB is used for high bandwidth, high performance and low latency intercon-
nections between the processors, memory and DMA controllers [17]. The fully syn-
chronous, split transaction bus with separate address, read and write data buses, allows
two simultaneous transfers per clock cycle.

PLB transactions, as in the AMBA AHB, consist of multiple phases which may last
for one or more clock cycles, and involve the address and data buses separately. Trans-
actions involving the address bus have three phases: request, transfer and address ac-
knowledge. A PLB transaction begins when a master drives its address and transfer
qualifier signals and requests ownership of the bus during the request phase of the ad-
dress tenure. Once the PLB arbiter grants bus ownership, the master’s address and
transfer qualifiers are presented to the slave devices during the transfer phase. The ad-
dress cycle terminates when a slave latches the master’s address and transfer qualifiers
during the address acknowledge phase.

Figure 5.9 illustrates two deep read and write address pipelining along with concurrent
read and write data tenures. Master A and Master B represent the state of each master’s
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Figure 5.9 PLB Transfer Protocol [17].

address and transfer qualifiers. The PLB arbitrates between these requests and passes
the selected master’s request to the PLB slave address bus. The trace labeled Address
Phase shows the state of the PLB slave address bus during each PLB clock.

Each data beat in the data tenure has two phases: transfer and acknowledge. During
the transfer phase the master drives the write data bus for a write transfer or samples
the read data bus for a read transfer. As shown in Figure 5.9, the first (or only) data
beat of a write transfer coincides with the address transfer phase.

Split Transaction

The PLB address, read data, and write data buses are decoupled from one another,
allowing for address cycles to be overlapped with read or write data cycles, and for
read data cycles to be overlapped with write data cycles. The PLB split bus transaction
capability allows the address and data buses to have different masters at the same
time. Additionally, a second master may request ownership of the PLB, via address
pipelining, in parallel with the data cycle of another master’s bus transfer. This is
shown in Figure 5.9.

The On-Chip Peripheral Bus (OPB)

The On-Chip Peripheral Bus (OPB) is a secondary bus architected to alleviate system
performance bottlenecks by reducing capacitive loading on the PLB[18]. Peripherals
suitable for attachment to the OPB include serial ports, parallel ports, UARTs, GPIO,
timers and other low-bandwidth devices. The OPB is far more sophisticated than the
AMBA APB. It supports multiple masters and slaves by implementing the address and
data buses as a distributed multiplexer. This type of structure is suitable for the less data
intensive OPB bus and allows peripherals to be added to a custom core logic design
without changing the I/O on either the OPB arbiter or existing peripherals. Figure 5.10
shows one method of structuring the OPB address and data buses. Both masters and
slaves provide enable control signals for their outbound buses. By requiring that each
unit provide this signal, the associated bus combining logic can be strategically placed
throughout the chip. As shown in the figure, either of the masters is capable of pro-
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Figure 5.10 The On-chip Peripheral Bus (OPB) [18].

Figure 5.11 Comparison between CoreConnect and AMBA architectures [30].

viding an address to the slaves, whereas both masters and slaves are capable of driving
and receiving the distributed data bus.

Figure 5.11 shows a comparison between the AMBA and CoreConnect bus standards.
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5.5.3 Bus Sockets and Bus Wrappers

Using a standard SOC bus for the integration of different reusable IP blocks has one
major drawback. Since standard buses specify protocols over wired connections, an IP
block that complies with one bus standard cannot be reused with another block using a
different bus standard. One approach to alleviate this is to employ a hardware “socket”
(also called a bus wrapper) to separate the interconnect logic from the IP core using
a well-defined IP core protocol which is independent of the physical bus protocol.
Core-to-core communication is therefore handled by the hardware wrapper, not by the
core. This approach is taken by Virtual Socket Interface Alliance (VSIA) [7] with their
Virtual Component Interface (VCI) [34] and by Sonics Inc. employing the Open Core
Protocol (OCP) and Silicon Backplane μNetwork [33].

VSIA proposes a set of standards and interfaces known as Virtual Socket Interface
(VSI) that enables system level interaction on a chip using pre-designed blocks (called
Virtual Components) [34]. This encourages integrated circuits to be designed using a
component paradigm. The Virtual Components (VCs), which are effectively IP blocks
that conform to the VSI specifications, can be one of three varieties. Hard VCs consist
of placed and routed gates with all silicon layers defined. It has predictable perfor-
mance, area usage and power consumption, but offers no flexibility. Soft VCs are
designed in some hardware description language representation, which are mapped to
physical design through synthesis, placement and routing. They can be easily modi-
fied, but generally take more effort to integrate and verify in the SOC design as well as
having less predictable performance. Finally, firm VCs offer a compromise between
the two. They come in the form of generators or partially placed library blocks that
require final routing and/or placement adjustment. This form of VCs provide more pre-
dictable performance than soft VCs, but still offer some degree of flexibility in aspect
ratio and configuration.

In order to connect these different VCs together, VSIA has developed a Virtual Com-
ponent Interface (VCI) specification to which other proprietary buses can interface. By
following the VCI specification, a designer can take a virtual component and integrate
it with any of several buses in order to meet system performance requirements. The
VCI standard specifies a family of protocols. Currently three protocols are defined: the
Peripheral VCI (PVCI), the Basic VCI (BVCI) and the Advanced VCI (AVCI) [34].
The PVCI is a low performance protocol where the request and the response data
transfer occur during a single control handshake transaction. It is therefore not a split-
transaction protocol. The BVCI employs a split-transaction protocol, but responses
must arrive in order. In other words, the response data must be supplied in the same
order in which the initiator generated the requests. The AVCI is similar to the BVCI,
but out of order transactions are allowed. Requests are tagged and transactions can be
interleaved and re-ordered.

In addition to the specification of the Virtual Component Interface, VSIA also specifies
a number of abstraction layers as depicted in Figure 5.12 to define the representation
views required to integrate a virtual component into an SOC design [7]. The idea is that
if both the IP block provider (VC provider) and the system integrator (VC integrator)
conform to the Virtual Socket Interface Specifications (VSI) at all levels of abstraction,
SOC designs using a IP component paradigm can proceed with less risk of errors.

An alternative to VCI is the Open Core Protocol (OCP) promoted by the Open Core
Protocol International Partnership (OCP-IP) [27]. The OCP defines a point-to-point in-
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Figure 5.12 VSIA representation views for integrating a virtual component into an
SOC [34].
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Figure 5.13 A Three Core System using OCP and Bus Wrappers [33].

terface between two communicating entities such as two IP cores using a core-centric
protocol. An interface implementing the OCP assumes the attributes of a socket, which
is effectively a bus wrapper that allows interfacing to the target bus. A system consist-
ing of three IP core modules using the OCP and bus wrappers is shown in Figure 5.13.
One modules is a system initiator, one is a system target, and another is both initiator
and target.

Another layer of interconnection can be made above the OCP in order to help IP inte-
gration further. Sonics Inc. proposes their proprietary SiliconBackplane Protocol that
seamlessly glues together IP blocks that uses the OCP. The communication between
different blocks takes place over the Silicon Backplane μNetwork, which has a scal-
able bandwidth of 50–4000 MB/sec. Figure 5.14 depicts how the Sonics μNetwork
components are connected together [33].

The wrapper-based approach has been demonstrated to reduce the design time of SOC,
but at a cost. Attaching simple wrapper hardware increases the access latencies and
incurs a hardware overhead of 3–5 K gates [25]. In addition, first-in-first-out (FIFO)
buffers are often embedded in the wrapper hardware in order to improve performance.

5.6 Beyond the Bus: Switching Interconnects

At some point the number of units and the traffic between units force the designer
to move beyond the bus and use some form of interconnect switching. Interconnect
networks or switches have long been used for interconnecting large processor clusters.
This section presents some basic concepts and alternatives in the design of the physical
interconnect network. This network consists of a configuration of switches to enable
the interconnection of N units. In the context of SOC, these designs are equally appli-
cable to switched interconnects and NOC, which includes a switch at the transaction
and physical level. The design efficiency or cost-performance of the interconnection
network is determined by:
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Figure 5.14 Sonics μNetwork Configuration [33].
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Figure 5.15 Node and channels.

1. The delay in connecting a requesting unit to its destination.

2. The bandwidth between units and the number of connections that can be carried
on concurrently.

3. The cost of the network.

SOC interconnect switches. This section is an abstract of some of the basic
concepts and results from the general computer interconnect literature. In SOC
switching, currently the number of nodes (units) is typically limited to 16–64.
Since the units are on chip, the link bandwidth, w, is relatively large: 14–128.
In SOC, dynamic networks are dominant so far; either crossbar or MIN static
networks, when used, tend to be grid (torus). As the number of SOC units
increases, a greater variety of network implementations are expected.

In a network, units communicate with one another via a link or a channel, which can be
either unidirectional or bidirectional. Links have bandwidth or the number of bits per
unit time that can be transmitted concurrently between units. Units may have multiple
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Figure 5.16 Static network (links between units is fixed).
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Figure 5.17 Dynamic network (links between units vary to establish connection).

links to other units, this defines their fanout—the number of bidirectional channels that
connect a particular node to neighboring nodes.

Networks are said to be static or dynamic. In a static network, the topology or the
relationship between nodes in the network is fixed (Figure 5.16). The path between two
nodes does not change. In a dynamic network, the paths between nodes can be altered
both to establish connectivity and also to improve network bandwidth (Figure 5.17).

5.6.1 Static Networks

In a static network the distance between two units is the smallest number of links or
channels (or hops) that must be traversed for establishing communications between
them. The diameter of the network is the largest distance (without backtracking) be-
tween any two units in the network. An example of a static netwok in linear network
(Figure 5.18a). We improve its average distance and diameter by converting it into a
ring (Figure 5.18b).
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(a)
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Figure 5.18 Example of static network without preferred sites. (a) Linear array.
(b) Linear array with closure (a ring). (c) Grid (2D mesh). (d) k × k grid with closure
(a 2D torus). These are also called (k, d) networks. In (a) and (b), we have k = 4,
d = 1 (one-dimensional). In (c) and (d), we have k = 3, d = 2.

Assume there are k nodes in a linear array, and we wish to interconnect several such
arrays. Instead of simply increasing the number of linear elements, we can increase
the dimensionality of the network, creating a grid network of two dimensions (Fig-
ure 5.18c). These are called (k,d) networks where d = n is the dimensionality of the
network. Figure 5.18(d) represents a torus, commonly refered to as a nearest-neighbor
mesh.

We can continue adding nodes to the network beyond the k × k specified in the grid
by using a third dimension. Such an interconnection topology would be referred to as
a k-ary three-cube [10]; k is simply the number of nodes in each dimension.

When k = 2, we have the special case of the binary cube, or hypercube. In the binary
hypercube, the dimensionality of the hypercube is determined by the fanout from each
node. In general, the number of nodes (N ) and the diameter can be determined as
follows: for (2, n), the binary n-cube with bidirectional channels has:

N = 2n

and for the (2,n) case:

Diameter = n.

For general (k, n) with n dimensions and with closure and bidirectional channels, we
have

N = kn
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or

n = logk N.

and

Diameter =

⌈
k − 1

2

⌉
n.

Example. Suppose we have a 4 by 4 grid (torus as in Figure 5.18(d)). In (k,d) terms it
is a (4,2) network, N = 16 and n = 2 and the Diameter is 4.

In general, it is the dimension of the network and its maximum distance that are im-
portant to cost and performance.

Links are characterized in three ways:

1. The cycle time of the link, Tch. This corresponds to the time it requires to
transmit between neighboring nodes. 1/Tch is the bandwidth of a wire in the
link or channel.

2. The width of the link, w. This determines the number of bits that may be con-
currently transmitted between two nodes.

3. Whether the link is unidirectional or bidirectional.

Associated with the link characterization is the length of the message in bits (l) plus
H header bits. The header is simply the address of the destination node. Thus, Tch ×
(l+H)/w will be the time required to transmit a message between two adjacent units.

Suppose unit A has a message for unit C, which must be transmitted via unit B. If
node B is available, the message is transmitted first from A to B and stored at B. After
the message has been completely transmitted, node B accesses node C and transmits
the message to C if C is available. Rather than storing the message at B, we can use
wormhole routing. As the message is received at B, it is buffered only long enough to
decode its header and determine its destination. As soon as this minimal amount of
information can be determined, the message is retransmitted to C, assuming that C is
available. The amount of buffering then required at B is significantly reduced and the
overall time of transmission is:

Twormhole = Tch[d · h + l/w],

where k = �H/w�.

Example. In a 4 by 4 grid, (k,d) = (4,2) and, assuming Tch = 1, let h = 1, l = 256
and w = 64. Then Twormhole = 2 + 4 = 6 cycles.

Once the header is decoded at an intermediate node, that node can determine whether
the message is for it or for another node. The intermediate node selects a minimum
distance path to the destination node. If multiple paths have the same distance, then
this intermediate node will select the path that is currently unblocked or available to it.

5.6.2 Dynamic Networks

The dynamic indirect network is shown in Figure 5.19a. For ease of representation,
the network is usually shown as in Figure 5.19b.
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Figure 5.19 A basic dynamic, indirect switching network.

c = 0

c = 1

k k

(a) (b)

Figure 5.20 (a) A 2 × 2 crossbar with control c. (b) This can be generalized to a
k × k crossbar switch.

Typically, the basic element in the dynamic network is a crossbar switch (Figure 5.20).
The crossbar simply connects one of k points to any of another k points. Multiple mes-
sages can be concurrently executed across the crossbar switch, so long as two messages
do not have the same destination. The cost of the crossbar switch increases as n2, so
that for larger networks, use of a crossbar switch only becomes prohibitively expen-
sive. In order to contain the cost of the switch, we can use a small crossbar switch
as the basis of a multistage network, frequently referred to as a MIN—multistage in-
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Figure 5.21 Baseline dynamic network topology.

terconnection network [35]. There are many types, including baseline, Benes, Clos,
Omega [23], and Banyan networks. The baseline network is among the simplest, and
is shown in Figure 5.21. The header causes successive stages of the switch to be set
so that the proper connection path is established between two nodes. For example,
consider a deterministic “obvious” routing algorithm for these M, N networks. Sup-
pose node 010 sends a message to destination 110. The switch outputs labeled 1, 1, 0
cause the message to be routed to the 110 destination node by setting the control (c) so
that either the upper output (“0”) or the lower output (“1”) of each switch is selected.
Similarly, the return path is simply 010. The number of stages between two nodes is:

Stages = �logk N�,

where k is the number of inputs to the crossbar element (k×k), and therefore the total
number of (k × k) switches required for a one-bit wide path is:

N

k
× �log

k
N�.

Other dynamic networks provide different tradeoffs on achievable message bandwidth,
message delay, and fault tolerance. Table 5.3 summarizes some of the attributes of
some common dynamic networks.

5.7 Evaluating Interconnect Networks

In recent years, there have been a number of important analyses about the comparative
merits of various network configurations [29, 19, 21].

5.7.1 Static versus Dynamic Networks

In this section, we present the results and largely follow the analyses performed by
Agarwal in his work on network performance [2].
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Table 5.3 Dynamic networks, switching N inputs×N outputs using k× k switches
(each input is one bit).

Network Other
Equivalent
Networks

Stages of Delay
(in units of k × k
switch delay)

Blocking Approx.
Cost (k × k
switches)

Baseline Delta,
Omega SW
Banyan

�logk N� Yes N

k
�logk N�

Benes — 2�logk N� − 1 Nonblocking if
reconfigured

2N

k
�logk N�

Clos — 2�log
k
N� − 1 Strictly non-

blocking

4N

k
�log

k
N�

l/w

h

< >

>  To network path

>  To network control

Figure 5.22 Message transmission from node to switch.

Dynamic Networks

Assume we have a dynamic indirect network made up of k×k switches with wormhole
routing. Let us assume this network has n stages and channel width w with message
length l. In the indirect network, we assume that the header network path address is
transmitted in one cycle just before the message leaves the node (i.e., there is only one
cycle of header overhead to set up the interconnect); see Figure 5.22.

Assuming the switches have unit delay (Tch = one cycle), the total time for a message
to transit the network without contention is:

Tc = n +
l

w
+ 1 cycles.

For all our subsequent analysis we assume that n + l/w � 1, so

Tc = n +
l

w
cycles.

In a blocking dynamic network, each network switch has a buffer. If a block is de-
tected, a queue develops at the node; so each of N units with occupancy ρ requests
service from the network. Since the number of connection lines at each network level
is the same (N ), then expected occupancy for each is ρ. At each switch, the mes-
sage transmits experiences a waiting time. Kruskal and Snir [21] have shown that this
waiting time is (assume that Tch = 1 cycle and express time in cycles):

Tw =
ρ(l/w)(1 − 1/k)

2(1 − ρ)
.
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The channel occupancy is

ρ = m
l

w

where m is the probability that a node makes a request in a channel cycle.

The total message transit time, Tdynamic, is:

Tdynamic = Tc + nTw

=

[
n +

l

w
+

nρ

2(1 − ρ)
(

l

w
)(1 − 1/k)

]
Tch.

Static Networks

A similar analysis may be performed on a static (k, n) network. Let kd be the average
number of hops required for a message to transit a single dimension. For a unidirec-
tional network with closure kd = (k−1)

2 , and for a bidirectional network kd = k

4 (k
even), the total time for a message to pass from source to destination is:

Tc =

[
h × n × kd +

l

w

]
Tch.

Again, we assume that Tch = 1 cycle and perform the remaining computations on a
cycle basis. Agarwal [2] computes the waiting time (M/G/1) as:

Tw =
ρ

1 − ρ

l

w

kd − 1

k2
d

(1 + 1/n).

The total transit time for a message to a destination (h = 1) is

Tstatic = Tc + nkdTw

= nkd + l/w +
nkdρ

1 − ρ

(
l

wkd

)
(1 + 1/n).

The preceding cannot be used for low k (i.e., k = 2, 3, 4). In this case [1],

Tw =
ρ

2(1 − ρ)

l

w

and

ρ =
mkdl

2w
or, for hypercube,

mkdl

w
.

5.7.2 Comparing Networks: Example

In the following example assume that m, the probability that a unit requests service
in any channel cycle is 0.1; h = 1, l = 256, w = 64. Compare a 4 by 4 grid
(torus) static network with N = 16, k = 4, n = 2 and a MIN dynamic network with
N = 16, k = 2.
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For the dynamic network, the number of stages is:

n = log2 16 = 4

while the channel occupany is:

ρ = m
l

w
= 0.1

256

64
= 0.4

The message transit time without contention is:

Tc = n +
l

w
+ 1 = 4 +

256

64
+ 1 = 9 cycles

while the waiting time is:

Tw =
ρ(l/w)(1 − 1/k)

2(1 − ρ)
=

0.4(256/64)(1− 1/2)

2(1 − 0.4)
=

0.8

1.2
= 0.67 cycle

Hence the total message transit time is:

Tdynamic = Tc + nTw = 9 + 4(0.67) = 11.68 cycles

For the static network, the average number of hops kd = k/4 = 1, and the total
message time is:

Tc =

[
h × n × kd +

l

w

]
Tch = [1 × 2 × 1 + (256/64)] = 6.

Since

ρ =
mkdl

2w
=

0.1 × 1 × 256

2 × 64
= 0.2,

and Tw for low k is given by:

Tw =
ρ

2(1 − ρ)

l

w
=

0.2

2(1 − 0.2)

256

64
= 0.5,

the waiting time is given by

Tstatic = Tc + nkdTw

= 6 + 2(1)(0.5)

= 7 cycles

5.8 Switches in SOC

An effective alternative to bus based interconnect is to disperse data traffic over the en-
tire design by connecting the user IP cores through an interconnect fabric. In this way,
data transfer bottlenecks are avoided because multiple data transfers can be performed
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Figure 5.23 Xfabric connecting Data Processing Core via Junction Components [8].

simultaneously. Xfabric uses this approach to connect user cores on a Xilinx FPGA
as shown in Figure 5.23 [8]. Data processing cores with one to four communication
ports are interconnected via a fabric of junction components (shown in gray). These
data routing junctions manage system data flow autonomously between multiple user
cores. Multiple instances of junctions form a 2-dimensional communication grid that
can connect together up to 1024 single-port cores. Horizontal and vertical data trans-
port links (shown in dashed lines) between junction components enable efficient and
deterministic data communications between cores located anywhere on the chip.

Figure 5.24 shows the functional schematic of a junction component. Each junction
consists of four Local Ports (LPORT0 to LPORT3) and four Global Ports (GPORT0
to GPORT3). User cores send 48-bit words and receive 32-bit words via Local Ports,
while the 16-bit Global Ports are used to route data to adjacent junctions.

Each junction component performs all the necessary routing and arbitration function
to deliver multiple parallel data streams between data sources and destinations with
minimum latency, thus avoiding transfer bottlenecks found in bus based systems.

5.8.1 Asynchronous Crossbar Interconnect for Synchronous SOC

Another switch-based interconnect scheme designed specifically for SOC applications
is the PivotPoint architecture by Fulcrum [9]. The center of the system is the Nexus
crossbar switch (see Figure 5.3) which has a data throughput rate of 1.6Tbps. Nexus
uses clockless asynchronous circuits and has the advantages normally associated with
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Figure 5.24 Schematic diagram of a Junction component [8].

this design style, including adaptivity to process technology, environmental variations,
and lower system power consumption. The choice of asynchronous design style is
partly driven by the need for interconnecting multiple clock domain cores. The syn-
chronous cores can run at different frequencies with independent phase relationships
to each other. Clock-domain converters are required to interface between the syn-
chronous cores and the asynchronous crossbar. Since the crossbar switch does not
use any clock signals, integrating different clock domains require no extra effort. In
this way, the system is globally asynchronous, but locally synchronous, which is also
known as a GALS system.

Data transfer on Nexus is done through bursts. Each burst contains a variable number
of data words (36-bit) and is terminated by a tail signal. A 4-bit control is used to indi-
cate a destination channel (TO), which becomes the source channel (FROM) when the
burst leaves the crossbar. The format of the burst is shown in Figure 5.25. Bursts are
automatically routed by the crossbar and cannot be dropped, fragmented or duplicated.
The crossbar provides the routing through a physical link which is created when the
first word of the burst enters the crossbar and is closed when the last word leaves the
crossbar.

PivotPoint is a system level architecture that is built on top of the Nexus crossbar
switch. Figure 5.26 shows a simplified PivotPoint architecture. In addition to the
Nexus crossbar switch, the first-in-first-out (FIFO) buffer provides data buffering func-
tion for the transmit (TX) and the receive (RX) channels. The System Packet Interface
(SPI-4.2) implements a standard protocol for chip-to-chip communication at data rates
of 9.9 to 16 Gbps.
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Figure 5.25 Format of Burst used on Nexus [9].

Figure 5.26 PivotPoint Architecture [9].
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5.8.2 Blocking vs. Non-blocking

Nexus and PivotPoint are designed to avoid head-of-the-line (HOL) blocking. HOL
blocking occurs when one packet failing to progress results in other unrelated packets
behind it to be blocked. PivotPoint uses virtual channels (also called ports) to transport
separated traffic streams simultaneously. Blocked packets in one channel only blocks
packets behind it on the same channel. Packets on other channels are free to progress.
In this way communication stalls are minimized.

5.9 Network-On-Chip (NOC)

Network-on-Chip (NOC) is an approach to SOC interconnects that promises to over-
come a number of limitations found in the conventional bus-based approach [6]. Al-
though the bus standards discussed earlier provide some degree of portability and
reusability of IP cores, they are difficult to adapt to advancements in both process
and bus interface technologies in the future. The fundamental weakness of buses is
that they do not take a layered approach to interconnection, i.e., there is no explicit
separation between the transaction level communication in the application layer and
the interconnect signals in the physical layer. In contrast, activities in NOC systems
are generally separated into transaction, transport and physical layers as depicted in
Figure 5.27. As a result, NOC systems can easily be adapted to the rapid advances in
process technology or system architecture.

Figure 5.27 The layered architecture of NOC [5].

Figure 5.28 shows a general-purpose on-chip interconnect network comprising of a
number of modules such as processors, memories and IP blocks organized as tiles.
These module tiles are connected to the network that routes packets of data between
them. All communications between tiles are via the network. The area overhead of
the network logic can be as low as 6.6% [11]. The key characteristics of such NOC
architecture are: 1) layered architecture which is easily scalable; 2) flexible network
topology which can be configured by the user to optimize performance for different
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applications; 3) point-to-point communication effectively decouples the IP blocks from
each other.

Figure 5.28 A typical NOC architecture [5].

5.9.1 NOC Layered Architecture

Most NOC architectures adopt a 3-layered communication scheme (see Figure 5.29).
The physical layer specifies how packets are transmitted over the physical interfaces.
Any changes in process technology, interconnecting switch structure and clock fre-
quency affect only this layer. Upper layers are not compromised in any way. The
transport layer defines how packets are routed through the switch fabric. A small
header cell in the packet is typically used to specify how routing is to be done. The
transaction layer defines the communication primitives used to connect the IP blocks
to the network. The NOC Interface Unit (NIU), analogous to the Network Interface
Card (NIC) in computer networks, provides the transaction level services to the IP
block, governing how information is exchanged between NIUs to implement a partic-
ular transaction.

The layered architecture of NOC offers a number of benefits [5]:

1. Physical and transport layers can be independently optimized - the physical
layer is governed mostly by process technology while the transaction layer is
dependent on the particular application. The layered approach allows them to be
separately optimized without affecting each other.

2. Inherently scalable - a properly designed switch fabric in a NOC can be scaled
to handle any amount of simultaneous transactions. The distributed nature of
the architecture allows the switches to be optimized to match the requirements.
At the same time, the NIU responsible for the transaction layer can be designed
to satisfy the performance requirement of the IP block that it services with no
effect on the configuration and performance of the switch fabric.
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Figure 5.29 The Transaction, Transport and Physical Layers of a NOC [5].

3. Better control of quality-of-service - rules defined in the transport layer can
be used to distinguish between time-critical and best-effort traffic. Prioritiz-
ing packets helps to achieve quality-of-service requirements enabling real-time
performance on critical modules.

4. Flexible throughput - by allocating multiple physical transport links, throughput
can be increased to meet the demand of a system statically or dynamically.

5. Multiple clock domain operation - since the notion of a clock only applies to the
physical layer and not to the transport and transaction layers, a NOC is particu-
larly suited to a SOC system containing IP blocks that operate at different clock
frequencies. Using suitable clock synchronization circuits at the physical layer,
modules with independent clock domains can be combined with reduced timing
convergence problems.

5.9.2 Bus vs. NOC

When compared with buses, NOC is not without drawbacks. Perhaps the most sig-
nificant weakness of NOC is the extra latency that it introduces. Unlike data com-
munication networks, where quality of service is governed mainly by bandwidth and
throughput, SOC applications usually also have very strict latency constraints. Further-
more, the NIU and the switch fabric add to the area overhead of the system. Therefore
direct implementation of a conventional network architecture in SOC generally results
in unacceptable area and latency overheads. Figure 5.30 presents the pros and cons
between buses and NOC approaches to SOC interconnect qualitatively.
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Every unit attached adds parasitic
capacitance (-)

Only point-to-point one-way wires are
used for all network sizes (+)

Bus timing is difficult in deep sub-
micron process (-)

Network wires can be pipelined
because the network protocol is
globally asynchronous (+)

Bus testability is problematic and slow
(-)

Dedicated BIST is fast and complete
(+)

Bus arbiter delay grows with the
number of masters.  The arbiter is also
instance-specific (-)

Routing decisions are distributed and
the same router is reinstanciated, for all
netowrk sizes (+)

Bandwidth is limited and shared by all
units attached (-)

Aggregated bandwidth scales with the
network size (+)

Bus latency is zero once arbiter has
granted control (+)

Internal network contention causes a
small latency (-)

The silicon cost of a bus is low for small
systems (+)

The network has a significant silicon
area (-)

Any bus is almost directly compatible
with most available IPs, including
software running on CPUs (+)

Bus-oriented IPs need smart wrappers.
Software needs clean synchronization
in multiprocessor systems (-)

The concepts are simple and well
understood (+)

System designers need re-education
for new concepts (-)

Bus Pros & Cons NOC Pros & Cons

Figure 5.30 The bus-versus-NOC arguments [14].

5.10 Conclusions

The interconnect subsystem is the backbone of the SOC. The system’s performance
can be throttled by limitations in the interconnect. Because of its importance, a great
deal of attention has been afforded to optimum cost-performance interconnect strate-
gies.

From a cursory view, it appears that there are three distinct approaches to SOC inter-
connect: bus based, switch based and network based (NOC). A closer examination
shows that these are most often complementary approaches. Indeed a NOC will in-
clude one or more switches, connecting nodes which can themselves be a bus based
cluster of processors or other IPs.

In the past most SOCs were predominantly bus based. The number of nodes to be
connected were small (perhaps 4 or 8 IPs), and each node consisted solely of a single
IP. This was a tried and tested method of interconnect that was both familiar and easy
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to use. Even now the use of standard protocols and bus wrappers make the task of IP
core integration less error-prone. Also the large number of bus options available allows
users to trade-off between complexity, easy of use, performance, and universality.

As the number of interconnected nodes increases, the bandwidth limitations of bus-
based approaches becomes more apparent. Switches overcome the bandwidth limita-
tions but with additional cost and, depending on the configuration, additional latency.
As switches (whether static or dynamic) are translated into IP and supported with ex-
perience and the emergence of tools, they will become the standard SOC interconnect
especially for high-performance systems.

Modeling the performance of either bus or switch is an important part of the SOC
design. If initial analysis of bus-based interconnection demonstrates insufficient band-
width and system performance, switch-based design is the alternative. Initial analysis
and design selection is usually based on analytic models; but once the selection has
been narrowed to a few alternatives, a more thorough simulation should be used to val-
idate the final selection. The performance of the SOC will depend on the configuration
and capability of the interconnection scheme.

Network-on-Chip is a promising extension. For a relatively small overhead, it enables
a layering of the interconnect implementation. This allows designs to be re-engineered
and extended to include new switches, etc. without affecting the upper level SOC
implementation. Growth in NOC adoption will facilitate easier SOC development.

5.11 Problem Set

1. A tenured split (address plus bi directional data bus) bus is 32 plus 64 bits wide.
A typical bus transaction (read or write) uses a 32 bit memory address and sub
sequentially has a 128 bit data transfer. If the memory access time is 12 cycles,

(a) Show a timing diagram for a read and a write (assuming no contention).

(b) What is the (data) bus occupancy for a single transaction?

2. If 4 processors use the bus described above and ideally (without contention) each
processor generates a transaction every 20 cycles:

(a) What is the offered bus occupancy?

(b) Using the bus model without resubmissions, what is the achieved occu-
pancy?

(c) Using the bus model with resubmissions, what.s the achieved occupancy?

(d) What is the effect on system performance for the (b) and (c) results?

3. Search for current products that use the AMBA bus; find at least three distinct
systems and tabularize their respective parameters (AHB and APB): bus width,
bandwidth, maximum number of IP users per bus. Provide additional details as
available.

4. Search for current products that use the CoreConnect bus; find at least three
distinct systems and tabularize their respective parameters (PLB and OPB): bus
width, bandwidth, maximum number of IP users per bus. Provide additional
details as available.
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5. Discuss some of the problems that you would expect to encounter in creating a
bus wrapper to convert from an AMBA bus to a CoreConnect bus.

6. A static switching interconnect is implemented as a 4x4 torus (2D) with worm
hole routing. Each path is bidirectional with 32 wires; each wire can be clocked
at 400 Mbps. For a message consisting of an 8 bit header and 128 bit “payload”.

(a) What is the expected latency (in cycles) for a message to transit from one
node to an adjacent node?

(b) What is the average distance between nodes and the average message la-
tency (in cycles)?

(c) If the network has occupancy of 0.4, what is the delay due to congestion
(waiting time) for the message?

(d) What is the total message transit time?

7. A dynamic switching interconnect is to connect 16 nodes using a baseline switch-
ing network implemented with 2x2 crossbars. It takes one cycle to transit a 2x2.
Each path is bidirectional with 32 wires; each wire can be clocked at 400 Mbps.
For a message consisting of an 8 bit header and 128 bit “payload”.

(a) What is the expected latency (in cycles) for a message to transit from one
node to any other?

(b) Draw the network.

(c) What is the message waiting time, if the network has occupancy of 0.4?

(d) What is the total message transit time?

8. The bisection bandwidth of a switching interconnect is defined as the maxi-
mum available bandwidth across a line dividing the network into two equal parts
(number of nodes). What is the bisection bandwidth for the static and dynamic
networks outlined above?

9. Search for at least three distinct NOC systems; compare their underlying switches
(find at least one dynamic and one static example). Provide details in table form.R
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