About this Topic

Topic 4

Arithmetic Circuits

Peter Cheung
Department of Electrical \& Electronic Engineering
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/
E-mail: p.cheung@imperial.ac.uk

Different adder architectures

- Revision on last year's digital electronics II course
(http://www.ee.ic.ac.uk/hp/staff/dmb/courses/dig2/5_Adder.pdf)
- Common adder architectures are:
- Ripple carry adder
- Carry lookahead adder
- Carry skip (or carry select) adder
- Carry save adder
- Parallel prefix adder (Brent \& Kung's)
- Comparison of adder architectures on FPGAs
- Multiple operands addition
- Basic multipliers
- Booth recoding multipliers
- Fixed point vs Floating Point
- Floating point Unit architectures
- Example: FIR and IIR filter implementations
- References
- "Computer Arithmetic", B. Parhami, OUP
- "Computer Arithmetic Algorithms", I. Koren, AK Peters

Basic Ripple Carry Adder

(a) Bit-serial adder.

(b) Ripple-carry adder.

Critical Path Through a Ripple-Carry Adder

$$
T_{\text {ripple-add }}=T_{\text {FA }}\left(x, y \rightarrow c_{\text {out }}\right)+(k-2) \times T_{\text {FA }}\left(c_{\text {in }} \rightarrow c \text { out }\right)+T_{\text {FA }}\left(c_{\text {in }} \rightarrow s\right)
$$

Critical path in a k-bit ripple-carry adder.

Source: Parhami

PYKC 21-Jan-08

E3.05 Digital System Design
Topic 4 Slide 5

Saturating Adders

Saturating (saturation) arithmetic:

When a result's magnitude is too large, do not wrap around; rather, provide the most positive or the most negative value that is representable in the number format

Example - In 8-bit 2's-complement format, we have:
$120+26 \rightarrow 18$ (wraparound); $120+_{\text {sat }} 26 \rightarrow 127$ (saturating)

Saturating arithmetic in desirable in many DSP applications

Designing saturating adders

Unsigned (quite easy)
Signed (only slightly harder)

Source: Parhami

Adder Conditions and Exceptions

Two's-complement adder with provisions for detecting conditions and exceptions.

$$
\begin{aligned}
& \text { overflow }_{2 \text { 's-compl }}=x_{k-1} y_{k-1} s_{k-1}^{\prime} \vee x_{k-1}^{\prime} y_{k-1}^{\prime} s_{k-1} \\
& \text { overflow }_{2 \text { 's-compl }}=c_{k} \oplus c_{k-1}=c_{k} c_{k-1}^{\prime} \vee c_{k}^{\prime} c_{k-1}
\end{aligned}
$$

| PYKC 21-Jan-08 E3.05 Digital System Design | Topic 4 Slide 6 |
| :--- | :--- | :--- |

Full Carry Lookahead

Theoretically, it is possible to derive each sum digit directly from the inputs that affect it

Carry-lookahead adder design is simply a way of reducing the complexity of this ideal, but impractical, arrangement by hardware sharing among the various lookahead circuits

Unrolling the Carry Recurrence

Carry-Lookahead Adder Design

Block generate and propagate signals

$$
\begin{aligned}
& g_{[i, i+3]}=g_{i+3}+g_{i+2} p_{i+3}+g_{i+1} p_{i+2} p_{i+3}+g_{i} p_{i+1} p_{i+2} p_{i+3} \\
& p_{[i, i+3]}=p_{i} p_{i+1} p_{i+2} p_{i+3}
\end{aligned}
$$

Schematic diagram of a 4-bit lookahead carry generator

Source: Parhami
Source: Parhami

PYKC 21-Jan-08

E3.05 Digital System Design
Topic 4 Slide 9

A Building Block for Carry-Lookahead Addition

Combining Block g and p Signals

Carry-select adder for k-bit numbers built from three $k / 2$-bit adders.

$$
\begin{aligned}
& C_{\text {select-add }}(k)=3 C_{\text {add }}(k / 2)+k / 2+1 \\
& T_{\text {select-add }}(k)=T_{\text {add }}(k / 2)+1
\end{aligned}
$$

Two-level carry-select adder built of $k / 4$-bit adders.

Comparison between adders on modern FPGAs

- Sacristan, Rodella \& Diaz, "Comparison of addition structures synthesis over commercial FPGAs", International Conf. on Design \& Test, 2006 Page(s):413 - 417
- Compare ripple carry adder (RCA), carry lookahead adder (CLA), carry select adder (CSLA), Brent\&Kung parallel prefix adder (PA-BK) and finally not specifying any structure and let the synthesis tool decide!
- Use Altera Stratix II and Xilinx Virtex-4 (not latest, but pretty recent).
- Result summary:
- Mostly as expected, faster means larger
- Surprising, synthesis tools does the best: both fast and small!!
- Morale - at low level, difficult to beat modern synthesis tools
- Results shown in the next four slides.

Results for Stratix II - Area

Results for Stratix II - Delay
Results for Virtex 4 - Area

Multipliers and DSP Blocks

- Remember that both Altera and Xilinx FPGAs have embedded multipliers with accumulators etc.
- This part of the lecture will look at some of the common multiplier hardware (i.e. what such embedded multiplier circuits might look like).
- We will also consider application of FPGA embedded multiplier for FIR Filter implementations.
- Topics to cover are:
- Basic multipliers
- Booth recoded multipliers
- Array multipliers
- FIR Filter Compiler

Multiplication of two 4-bit unsigned numbers

Notation:

a	Multiplicand		$a_{k-1} a_{k-2} \ldots a_{1} a_{0}$ x
p	Multiplier	Product $(a \times x)$	$p_{2 k-1} p_{2 k-2}$
$x_{k-1} x_{k-2} \ldots$	$\cdot x_{1} x_{0}$		
p	$\cdot p_{3} p_{2} p_{1} p_{0}$		

Initially, we assume unsigned operands

$\begin{array}{r} 0 \bullet 0 \\ \times 000 \end{array}$	$\begin{aligned} & a \\ & x \end{aligned}$	Multiplicand Multiplier
\bullet°	$\left.\begin{array}{llll} x_{0} & a & 2 & 0 \\ x_{1} & a & 2 & 1 \\ x_{2} & a & 2 & 2 \\ x_{3} & a & 2 & 2 \end{array}\right\}$	Partial products bit-matrix
- - - - -	p	Product

	E3.05 Digital System Design	Source: Parhami
PYKC 21-Jan-08	Topic 4 Slide 2	

Basic Sequential Multipliers

An example

$\begin{array}{rl} \text { Multiplicant } & \longrightarrow \begin{array}{l} 1 \\ \text { Multiplier } \end{array} \\ \times 11 & 1 \\ 0 & 1 \end{array} 11 \begin{aligned} & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Yu}=\mathrm{y} 3: y 2: x 1: y 0 \\ & \mathrm{Xu}=\mathrm{x} 3: \mathrm{x} 2: x 1: x 0 \end{aligned}$	$\begin{array}{r} 10 \\ \times \quad 7 \\ \hline \end{array}$
zero extended $\longrightarrow 01010$	x 0 * Yu	10
$\begin{array}{r}1010 \\ +1010 \\ \hline\end{array}$	2 xl * Yu	+ 20
$\text { carry out } \longrightarrow 01111$		
$\begin{array}{r} +\quad 1010 \\ \hline \end{array}$	4 x 2 * Yu	+ 40
40001		
+0000	$8 \times 3 * \mathrm{Yu}$	+ 0
01000		
$\boldsymbol{\nabla} \boldsymbol{\nabla}$		
01000110		

Performing Add and Shift in One Clock Cycle

Combining the loading and shifting of the double-width register holding the partial product and the partially used multiplier.

Example of a detail 4×4 unsigned sequential multiplier

- $\mathrm{XBIT}=\mathrm{x} 3 ;$ CLOCK \uparrow
- Answer: $\mathrm{Z7}: 0=\mathrm{Xu}$ * Yu
4×4 sequential signed multiplier circuit

2's complement signed multiplication

$\begin{aligned} \text { Multiplicant } \\ \text { Multiplier } \end{aligned} \rightarrow \begin{aligned} & 1010 \\ & \times 0111 \end{aligned}$	$\begin{aligned} & \mathrm{Ys}=y 3: y 2: x 1: y 0 \\ & \mathrm{Xs}=x 3: x 2: x 1: x 0 \end{aligned}$	$\begin{array}{r} -6 \\ \times \quad 7 \\ \hline \end{array}$
$\text { sign extended } \longrightarrow \mathbf{~} \longrightarrow 110000$	$x 0 * \mathrm{Ys}$	-6
$\text { signed addition } \rightarrow \begin{array}{r} \hline \boldsymbol{1} 11010 \\ 11010 \\ \end{array}$	$2 x 1$ *Ys	$t-12$
$\begin{array}{r} 110111 \\ +11010 \end{array}$	4×2 * Ys	$+-24=-18$
$\text { sioned subtract }-\begin{aligned} & 1100101 \\ & 0 \end{aligned} \boldsymbol{0} 0000$	$-8 x 3 * \mathrm{Ys}$	$-0^{=-42}$
11010		$=-42$
11010110		

PYKC 21-Jan-08

Recoded Multiplier - Booth Algorithm (1)

Instead of treating the MSB differently from all other bits, it is possible to rearrange the binary bits and code them differently. Booth Algorithm is one of many algorithms that group together a number of bits in the multiplier and perform a recoding of the binary bits before the actual addition/subtraction. The table above shows how the Booth algorithm work:

- At each stage, we add $\mathrm{Ys} * 2^{\mathrm{i}} *\left(-\mathrm{x}_{\mathrm{i}}+\mathrm{x}_{\mathrm{i}-1}\right)$
- We assume that $\mathrm{x}_{-1}=0$

Recoded Multiplier - Booth Algorithm (1)

PYKC 21-Jan-08
E3.05 Digital System Design
Topic 4 Slide 29

Sequential Booth Multiplier

Multi-bit sequential multiplier

All the circuits considered so far handle only one bit multiplication at each clock cycle. There are no reasons why we could not deal with two (or more) bits at a time.

Modified Booth Algorithm (2 bits at a time)

Modified Booth Recoding (2 bits at a time)

XBIT1	XBIT0	PREVBI T	Mult. factor
0	0	0	0
0	0	1	+1
0	1	0	+1
0	1	1	+2
1	0	0	-2
1	0	1	-1
1	1	0	-1
1	1	1	0

We can derive the following equations from the above table $S U B=X B I T 1$
DOUBLE $=\overline{X B I T ~ 0 \oplus P R E V B I T}$
$Z E R O=(X B I T 1=X B I T 0=P R E V B I T)$
$=\overline{X B I T ~ 1 \oplus \text { XBIT } 0} \bullet$ DOUBLE

Modified Booth Multiplier Circuit

Modified Booth Multiplier Circuit

We need 6 bit adder output to accommodate the answer without overflow.

- X3:0 is sign-extended to make it 5 bits, the same as kY .

Array Multiplier

Array Multiplier - using carry-save adders

Array Multiplier - obvious, but slow version

Embedded Multipliers in Altera Cyclone II (1)

Embedded Multipliers in Altera Cyclone II (2)

Multiplier Mode	Description
18-bit Multiplier	An embedded multiplier can be configured to support a single 18×18 multiplier for operand widths up to 18 bits. All 18-bit multiplier inputs and results can be registered independently. The multiplier operands can accept signed integers, unsigned integers, or a combination of both.
9-bit Multiplier	An embedded multiplier can be configured to support two 9 $\times 9$ independent multipliers for operand widths up to 9-bits. Both 9-bit multiplier inputs and results can be registered independently. The multiplier operands can accept signed integers, unsigned integers or a combination of both. There is only one signa signal to control the sign representation of both data A inputs and one signb signal to control the sign representation of both data B inputs of the 9-bit multipliers within the same dedicated multiplier.

Application of Multipliers: Typical DSP System

- Altera and Xilinx provide FIR filter compiler support.
- These examples are taken from Altera's "FIR Compiler User's Guide".
- MegaCore functions pre-designed core (large modules).
- LPM Functions are parameterised building blocks (e.g. adder, multiplier)

Embedded Multipliers in Altera Cyclone II (3)

Basic FIR Filter

- Altera and Xilinx provide FIR filter compiler support.
- These examples are taken from Altera's "FIR Compiler User's Guide" :/ITERA

| PYKC 21-Jan-08 E3.05 Digital System Design | Topic 4 Slide 44 |
| :--- | :--- | :--- |

Exploiting Symmetric Coefficients (7-tap)

Serial Implementation of FIR Filter

Multibit Serial Implementation of FIR Filter

Soure: ADERA

Floating-Point Numbers

Area

Area		
		Source: 2 ITBPA
PYKC 21-Jan-08	E3.05 Digital System Design	Topic 4 Slide 49

Floating-Point Number Format and Distribution

No finite number system can represent all real numbers Various systems can be used for a subset of real numbers

Fixed-point	$\pm w . f$	Low precision and/or range
Rational	$\pm p / q$	Difficult arithmetic
Floating-point	$\pm s \times b^{e}$	Most common scheme
Logarithmic	$\pm \log _{b} x$	Limiting case of floating-point

Fixed-point numbers

$$
\begin{array}{ll}
x=(00000000.00001001)_{\text {two }} & \text { Small number } \\
y=(10010000.00000000)_{\text {two }} & \text { Large number }
\end{array}
$$

Floating-point numbers

$$
x= \pm s \times b^{e} \quad \text { or } \quad \pm \text { significand } \times \text { base }^{\text {exponent }}
$$

Note that a floating-point number comes with two signs:
Number sign, usually represented by a separate bit
Exponent sign, usually embedded in the biased exponent

The ANSI/IEEE Floating-Point Representation

Long (64-bit) format

	E3.05 Digital System Design	Source: Parhami
PYKC 21-Jan-08	Topic 4 Slide 52	

Overview of IEEE 754 Standard Formats

Some features of the ANSI/IEEE standard floating-point number representation formats.		
Feature	Single/Short	Double/Long
Word width (bits)	32	64
Significand bits	$23+1$ hidden	$52+1$ hidden
Significand range	$\left[1,2-2^{-23}\right]$	$\left[1,2-2^{-52}\right]$
Exponent bits	8	11
Exponent bias	127	1023
Zero (± 0)	$e+$ bias $=0, f=0$	$e+$ bias $=0, f=0$
Denormal	$e+$ bias $=0, f \neq 0$	$e+$ bias $=0, f \neq 0$
	represents $\pm 0 . f \times 2^{-126}$	represents $\pm 0 . f \times 2^{-1022}$
Infinity $(\pm \infty)$	$e+$ bias $=255, f=0$	$e+b i a s=2047, f=0$
Not-a-number (NaN)	$e+$ bias $=255, f \neq 0$	$e+$ bias $=2047, f \neq 0$
Ordinary number	$e+$ bias $\in[1,254]$	$e+$ bias $\in[1,2046]$
	$e \in[-126,127]$	$e \in[-1022,1023]$
min	represents $1 . f \times 2^{e}$	represents $1 . f \times 2^{e}$
max	$2^{-126} \cong 1.2 \times 10^{-38}$	$2^{-1022 \cong 2.2 \times 10^{-308}}$
	$\cong 2^{128} \cong 3.4 \times 10^{38}$	$\cong 2^{1024 \cong 1.8 \times 10^{308} \cong}$

Exponent Encoding

Exponent encoding in 8 bits for the single/short (32-bit) ANSI/IEEE format

Decimal code	0	1	126	127	128	254	255
Hex code	00	01	7E	7F	80	FE	FF
Exponent value		-126	-1	0	+1	+127	
				+			

$f=0$: Representation of ± 0

$f \neq 0$: Representation of denormals,
$0 . f \times 2^{-126}$

Exponent encoding in
11 bits for the double/long
(64-bit) format is similar

| PYKC 21-Jan-08 E3.05 Digital System Design | Topic 4 Slide 54 |
| :--- | :--- | :--- |

$f=0$: Representation of $\pm \infty$ $f \neq 0$: Representation of NaNs

Floating-Point Adders/Subtractors

Assume $e 1 \geq e 2$; alignment shift (preshift) is needed if $e 1>e 2$

$$
\begin{aligned}
\left(\pm s 1 \times b^{e 1}\right)+\left(\pm s 2 \times b^{e 2}\right) & =\left(\pm s 1 \times b^{e 1}\right)+\left(\pm s 2 / b^{e 1-e 2}\right) \times b^{e 1} \\
& =\left(\pm s 1 \pm s 2 / b^{e 1-e 2}\right) \times b^{e 1}= \pm s \times b^{e}
\end{aligned}
$$

Example:

Numbers to be added: $x=2^{5} \times 1.00101101$ $y=2^{1} \times 1.11101101$

Operands after alignment shift: $x=2^{5} \times 1.00101101$ $y=2^{5} \times 0.000111101101$

Result of addition: $s=2^{5} \times 1.01001100$
\qquad

Operand with smaller exponen to be preshifted
rounded off

Rounded sum

Like signs:

Possible 1-position normalizing right shift

Different signs:

Possible left shift by many positions

Overflow/underflow
during addition or normalization

Source: Parhami
Topic 4 Slide 5

FP Adder/Sub

Isolate the sign, exponent, significand Reinstate the hidden 1
Convert operands to internal format
Identify special operands, exceptions

Other key parts of the adder
 - Significand aligner (preshifter)
 -Result normalizer (postshifter), including leading Os detector/predictor
 Rounding unit
 - Sign logic
 Converting internal to externa representation, if required, must be done at the rounding stage
 Combine sign, exponent, significand Hide (remove) the leading 1 Identify special outcomes, exceptions

re- and Postshifting

One bit-slice of a single-stage
pre-shifter.

Four-stage combinational shifter for preshifting an operand by 0 to 15 bits.

Source: Parhami
PYKC 21-Jan-08
E3.05 Digital System Design
Topic 4 Slide 57

Leading Zeros/Ones Detection or Prediction

Leading zeros prediction, with adder inputs $\left(0 x_{0} \cdot x_{-1} x_{-2} \cdots\right)_{2 ' s-c o m p l}$ and $\left(0 y_{0} \cdot y_{-1} y_{-2} \ldots\right)_{2 \text { 's-compl }}$

Ways in which leading 0s/1s are generated:

$$
\begin{array}{llll}
p & p & \ldots & p
\end{array} \text { g a } a \ldots \ldots \text { a a } g \ldots . \ldots .
$$

Prediction might be done in two stages:

- Coarse estimate, used for coarse shift
- Fine tuning of estimate, used for fine shift

In this way, prediction can be
partially overlapped with shifting
Source: Parhami
PYKC 21-Jan-08 E3.05 Digital System Design

Further references for Floating Point on FPGAs

Hemmert, K.S.; Underwood, K.D.; 13th Annual IEEE Symposium on Field-Programmable Custom

- Architectural Modifications to Improve Floating-Point Unit Efficiency in FPGAs

Beauchamp, M.J.; Hauck, S.; Underwood, K.D.; Hemmert, K.S.; International Conference on Field Programmable Logic and Applications, 28-30 Aug. 2006 Page(s):1-6

Paschalakis, S.; Lee, P.; IEEE International Conference on Field-Programmable Technology

Speed considerations

Many multipliers produce the lower half of the product (rounding info) early
Need for normalizing right-shift is known at or near the end

Hence, rounding can be integrated in the generation of the upper half, by producing two versions of these bits

- An analysis of the double-precision floating-point FFT on FPGAs Computing Machines, 18-20 April 2005 Page(s):171-180
- Double precision floating-point arithmetic on FPGAs (FPT), 15-17 Dec. 2003 Page(s):352-358
loating-point operands
$\left(\pm s 1 \times b^{e 1}\right) \times\left(\pm s 2 \times b^{e 2}\right)=(\pm s 1 \times s 2) \times b^{e 1+e 2}$
$s 1 \times s 2 \in[1,4):$ may need postshifting Overflow or underflow can occur during multiplication or normalization

Floating-Point Multipliers

