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About this Topic

Comparison of adder architectures on FPGAs
Multiple operands addition
Basic multipliers
Booth recoding multipliers
Fixed point vs Floating Point
Floating point Unit architectures
Example: FIR and IIR filter implementations
References
• “Computer Arithmetic”, B. Parhami, OUP
• “Computer Arithmetic Algorithms”, I. Koren, AK Peters
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Different adder architectures

Revision on last year’s digital electronics II course 
(http://www.ee.ic.ac.uk/hp/staff/dmb/courses/dig2/5_Adder.pdf)

Common adder architectures are:
• Ripple carry adder
• Carry lookahead adder
• Carry skip (or carry select) adder
• Carry save adder
• Parallel prefix adder (Brent & Kung’s)

Topic 4 Slide 4PYKC 21-Jan-08 E3.05 Digital System Design

Basic Ripple Carry Adder

Using full-adders in building 
bit-serial and ripple-carry 
adders.
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Critical Path Through a Ripple-Carry Adder

Critical path in a k-bit ripple-carry adder.

x 

s 

y 

c 

x 

s 

y 

c 

x 

s 

y 

c 

x 

s 

y 

c 

c out c in 

0 0 

0 

c 0 

1 1 

1 

1 

k-2 k–2 

k–2 

2 k 

k–1 

k–1 

k–1 

k–1 

FA FA FA FA .   .   . 
c k–2 

s k 

Tripple-add = TFA(x,y→cout) + (k – 2)×TFA(cin→cout) + TFA(cin→s)

Source: Parhami
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Two’s-complement adder with provisions for 
detecting conditions and exceptions.
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overflow2’s-compl =  ck ⊕ ck–1 =  ck ck–1′ ∨ ck′ ck–1

Adder Conditions and Exceptions

Source: Parhami
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Saturating Adders
Saturating (saturation) arithmetic: 

When a result’s magnitude is too large, do not wrap around; 
rather, provide the most positive or the most negative value that is 
representable in the number format

Designing saturating adders

Saturating arithmetic in desirable in many DSP applications

Saturation value

Overflow

0

1

Adder

Unsigned (quite easy)

Signed (only slightly harder)

Example – In 8-bit 2’s-complement format, we have:
120 + 26 18 (wraparound);   120 +sat 26 127 (saturating)

Source: Parhami
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Full Carry Lookahead

Theoretically, it is possible to derive each sum digit directly from 
the inputs that affect it

Carry-lookahead adder design is simply a way of reducing the 
complexity of this ideal, but impractical, arrangement by hardware 
sharing among the various lookahead circuits

s0s1s2s3

y0y1y2y3 x0x1x2x3

cin

. . .

Source: Parhami
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Unrolling the Carry Recurrence

Recall the generate g, propagate p signals:

Signal Radix r Binary
gi is 1 iff xi + yi ≥ r xi yi
pi is 1 iff xi + yi = r – 1 xi ⊕ yi

si (xi + yi + ci) mod r xi ⊕ yi ⊕ ci

The carry recurrence can be unrolled to obtain each carry signal directly from 
inputs, rather than through propagation 

ci = gi–1 + ci–1 pi–1

= gi–1 + (gi–2 + ci–2 pi–2) pi–1

= gi–1 + gi–2pi–1 + ci–2 pi–2pi–1

= gi–1 + gi–2pi–1 + gi–3 pi–2pi–1 + ci–3 pi–3 pi–2pi–1

= gi–1 + gi–2pi–1 + gi–3 pi–2pi–1 + gi–4 pi–3 pi–2pi–1 + ci–4 pi–4 pi–3 pi–2pi–1

= . . .

Source: Parhami
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Carry-Lookahead Adder Design

Block generate and propagate signals

g [i,i+3] =  gi+3 + gi+2pi+3 + gi+1 pi+2pi+3 + gi pi+1 pi+2pi+3

p [i,i+3] =  pi pi+1 pi+2pi+3

ic
4-bit lookahead carry generator

g p g p g p g p

 [i,i+3]
p

 i+1
c
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c
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g

iii+1i+1i+2 i+2 i+3  i+3

 [i,i+3]

Schematic diagram of a 4-bit lookahead carry generator.

Source: Parhami
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A Building Block for 
Carry-Lookahead Addition

Four-bit 
lookahead 

carry generator.
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Source: Parhami
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Combining Block g and p Signals

Block generate and 
propagate signals can 
be combined in the 
same way as bit g and 
p signals to form g
and p signals for 
wider blocks

Combining of g and p signals of four (contiguous or 
overlapping) blocks of arbitrary widths into the g and p 

signals for the overall block [i0, j3].
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4-bit lookahead carry generator

g p

0

i 0
i 1

i 2
i 3

j 0
j 1

j 2
j 3

j   +1c
1c

2

g pg p g p

g p

Source: Parhami
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Carry-Select Adders

Cselect-add(k)  =  3Cadd(k/2) + k/2 + 1

Tselect-add(k)   =  Tadd(k/2) + 1

k /2-bit adder 
k /2-bit adder 

k  - 1                k /2 k  - 1                  0  

 

  0 
 
1 

k /2+1 k /2+1 k /2 

1              0 
Mux 

k /2 
c out 

c k /2 

c in 

High k /2 bits Low k /2 bits 

k /2-bit adder 

Carry-select adder for k-bit numbers built from 
three k/2-bit adders.

Source: Parhami
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Multilevel Carry-Select Adders
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Two-level carry-select adder built of k/4-bit adders.
Source: Parhami
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Comparison between adders on modern FPGAs

Sacristan, Rodella & Diaz, “Comparison of addition structures synthesis over 
commercial FPGAs”, International Conf. on Design & Test, 2006 Page(s):413 
- 417 
Compare ripple carry adder (RCA), carry lookahead adder (CLA), carry select 
adder (CSLA), Brent&Kung parallel prefix adder (PA-BK) and finally not 
specifying any structure and let the synthesis tool decide!
Use Altera Stratix II and Xilinx Virtex-4 (not latest, but pretty recent).
Result summary: 
• Mostly as expected, faster means larger
• Surprising, synthesis tools does the best: both fast and small!!
• Morale – at low level, difficult to beat modern synthesis tools

Results shown in the next four slides.
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Results for Stratix II – Area

Source: Sacristan
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Results for Stratix II – Delay

Source: Sacristan
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Results for Virtex 4 – Area

Source: Sacristan
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Results for Virtex-4 – Delay

Source: Sacristan
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Multipliers and DSP Blocks

Remember that both Altera and Xilinx FPGAs have embedded multipliers with 
accumulators etc.
This part of the lecture will look at some of the common multiplier hardware 
(i.e. what such embedded multiplier circuits might look like).
We will also consider application of FPGA embedded multiplier for FIR Filter 
implementations.
Topics to cover are:
• Basic multipliers
• Booth recoded multipliers
• Array multipliers
• FIR Filter Compiler
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Multiplication of two 4-bit unsigned numbers

Notation:

a Multiplicand ak–1ak–2 . . . a1a0

x Multiplier xk–1xk–2 . . . x1x0

p Product (a × x) p2k–1p2k–2 .    .    . p3p2p1p0

Initially, we assume unsigned operands
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Source: Parhami
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An example
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Basic Sequential  Multipliers
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Source: Parhami
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Performing Add and Shift in One Clock Cycle

Partial product p (j) 

k 

Unused 
part o f the 
multiplier x 

Adder’s  
carry-out  

Adder’s sum  

k 

k – 1 

k – 1 

To mux control  To adder 

Combining the loading and shifting of the double-width 
register holding the partial product and the partially used 
multiplier.

Source: Parhami
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Example of a detail 4x4 unsigned sequential multiplier
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2’s complement signed multiplication
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4x4 sequential signed multiplier circuit
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Recoded Multiplier – Booth Algorithm (1)
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Recoded Multiplier – Booth Algorithm (1)
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Proof of Booth Algorithm

Booth Algorithm does this

2’s complement rep of x
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Sequential Booth Multiplier

B±A

+/-
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Multi-bit sequential multiplier
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Modified Booth Algorithm (2 bits at a time)
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Modified Booth Recoding (2 bits at a time)

Topic 4 Slide 35PYKC 21-Jan-08 E3.05 Digital System Design

Modified Booth Multiplier Circuit
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Modified Booth Multiplier Circuit
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Array Multiplier
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Array Multiplier – obvious, but slow version

Topic 4 Slide 39PYKC 21-Jan-08 E3.05 Digital System Design

Array Multiplier – using carry-save adders
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Embedded Multipliers in Altera Cyclone II (1)

Source:
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Embedded Multipliers in Altera Cyclone II (2)

Source:
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Embedded Multipliers in Altera Cyclone II (3)

Source:

Topic 4 Slide 43PYKC 21-Jan-08 E3.05 Digital System Design

Application of Multipliers: Typical DSP System

Altera and Xilinx provide FIR filter compiler support.
These examples are taken from Altera’s “FIR Compiler User’s Guide”.
MegaCore functions pre-designed core (large modules).
LPM Functions are parameterised building blocks (e.g. adder, multiplier)

Source:
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Basic FIR Filter

Altera and Xilinx provide FIR filter compiler support.
These examples are taken from Altera’s “FIR Compiler User’s Guide”.Source:
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Exploiting Symmetric Coefficients (7-tap)

Source:
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Parallel Implementation of FIR Filter

Source:
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Serial Implementation of FIR Filter

Source:
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Multibit Serial Implementation of FIR Filter

Source:
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FIR Filter Compiler Design Space

Source:
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Floating-Point Numbers

No finite number system can represent all real numbers
Various systems can be used for a subset of real numbers

Fixed-point ± w . f
Rational ± p /q
Floating-point ± s×be

Logarithmic ± logbx

Fixed-point numbers

x =  (0000 0000 . 0000 1001)two Small number
y =  (1001 0000 . 0000 0000)two Large number 

Low precision and/or range
Difficult arithmetic
Most common scheme
Limiting case of floating-point

Floating-point numbers

x =  ± s × be or ± significand × baseexponent

Note that a floating-point number comes with two signs: 

Number sign, usually represented by a separate bit   
Exponent sign, usually embedded in the biased exponent

Source: Parhami
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Floating-Point Number Format and Distribution

Subranges and special 
values in floating-point 

number representations.

E x p o n  e n t : 
Signed integer, 
often represented 
as unsigned value 
by adding a bias   
 
Range with h bits: 
[–bias, 2  –1–bias]h

S i g n i f i c a n d : 
Represented as a fixed-point number

Usually normalized by shifting,  
so that the MSB becomes nonzero.  
In radix 2, the fixed leading 1   
can be removed to save one bit;  
this bit is known as "hidden 1".

Sign 
 
0 : + 
1 : –

± e s
Typical floating-

point number 
format.

Denser Denser Sparser Sparser 

Negative numbers  
FLP FLP ±0 +∞ 

 
–∞ 

 

O verflow 
region  

O verflow 
region  

Underflow 
regions  

Positive numbers  

Underflow 
example  

O verflow 
example  

Midway 
example  

Typical  
example  

min max  min max  + + – – – + 

Source: Parhami
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The ANSI/IEEE Floating-Point Representation

 

Short (32-bit) format 

Long (64-bit) format 

Sign  Exponent Significand 

 8 bits , 
 bias  = 127, 
 –126 to 127 

 11 bits , 
 bias  = 1023, 
 –1022 to 1023 

52 bits  for fractional part  
(plus  hidden 1 in integer part) 

23 bits  for fractional part  
(plus  hidden 1 in integer part) 

IEEE 754 Standard
(now being revised to 
yield IEEE 754R) 

Source: Parhami
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––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Feature Single /Short Double/Long
––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Word width (bits) 32 64
Significand bits 23 + 1 hidden 52 + 1 hidden
Significand range [1, 2 – 2–23] [1, 2 – 2–52]
Exponent bits 8 11
Exponent bias 127 1023
Zero (±0) e + bias = 0, f = 0 e + bias = 0, f = 0
Denormal e + bias = 0, f ≠ 0 e + bias = 0, f ≠ 0 

represents ±0.f×2–126 represents ±0.f×2–1022

Infinity (±∞) e + bias = 255, f = 0 e + bias = 2047, f = 0
Not-a-number (NaN) e + bias = 255, f ≠ 0 e + bias = 2047, f ≠ 0
Ordinary number e + bias ∈ [1, 254] e + bias ∈ [1, 2046]

e ∈ [–126, 127] e ∈ [–1022, 1023]
represents 1.f × 2e represents 1.f × 2e

min 2–126 ≅ 1.2 × 10–38 2–1022 ≅ 2.2 × 10–308

max ≅ 2128 ≅ 3.4 × 1038 ≅ 21024 ≅ 1.8 × 10308

––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Overview of IEEE 754 Standard Formats

Some features of the ANSI/IEEE standard floating-point number representation formats. 

Source: Parhami
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Exponent Encoding

00 01 7F FE FF7E 80
0 1 127 254 255126 128

–126 0 +127–1 +1

Decimal code
Hex code

Exponent value

f = 0: Representation of ±0
f ≠ 0: Representation of denormals, 

0.f × 2–126

f = 0: Representation of ±∞
f ≠ 0: Representation of NaNs

Exponent encoding in 8 bits for the single/short (32-bit) ANSI/IEEE format

Exponent encoding in 
11 bits for the double/long 
(64-bit) format is similar

Denser Denser Sparser Sparser 

Negative numbers  
FLP FLP ±0 +∞ 

 
–∞ 

 

O verflow 
region 

Overflow 
region 

Underflow 
regions  

Positive numbers  

Underflow 
example  

O verflow 
example 

Midway 
example 

Typical  
example 

min max min max  + + – – – + 

1.f × 2e
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Floating-Point Adders/Subtractors

-

(± s1 × b e1) + (± s2 × be2) =  (± s1 × b e1) + (± s2 /b e1–e2) × b e1

=  (± s1 ± s2 /b e1–e2) × b e1 =  ± s × b e

Assume e1 ≥ e2; alignment shift (preshift) is needed if e1 > e2

Operands after alignment shift: 
  x = 2   1.00101101 
  y = 2   0.000111101101 

Numbers to be added: 
  x = 2   1.00101101 
  y = 2   1.11101101 

5 × 
× 

5 
× 
× 

Extra  bits  to be  
rounded off 

Operand with  
smaller exponent  
to be preshifted 

Result of addition: 
  s = 2   1.010010111101 
  s = 2   1.01001100 Rounded sum 

× 
× 

5 

1 

5 
5 

Example: Like signs:
Possible 1-position 
normalizing right shift

Different signs:
Possible left shift by 
many positions

Overflow/underflow
during addition or 
normalization

Source: Parhami
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FP Adder/Sub

Normalize 

Add 

Align significands 

 

Unpack 
 

Control  
& sign 
logic 

Add/ 
Sub 

    
Pack 

Operands 

Sum/Difference 

Significands Exponents Signs 

Significand Exponent Sign 

x y 

s 

Sub 

Add 

Mu x 

c out c in 

Selective complement  
and possible swap  

 
Round and 

selective complement  
 

Normalize 

Other key parts of the adder:
•Significand aligner (preshifter)
•Result normalizer (postshifter), including 

leading 0s detector/predictor
•Rounding unit
•Sign logic

Converting internal to external 
representation, if required, must be 
done at the rounding stage

Isolate the sign, exponent, significand 
Reinstate the hidden 1
Convert operands to internal format
Identify special operands, exceptions

Combine sign, exponent, significand 
Hide (remove) the leading 1
Identify special outcomes, exceptions
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re- and Postshifting

One bit-slice of a single-stage 
pre-shifter.

x ix i+2 x i+1x i+4 x i+3x i+6 x i+5x i+8 x i+7

y iy i+2 y i+1y i+4 y i+3y i+6 y i+5y i+8 y i+7

LSB

MSB

  4-Bit 
  Shift 
Amount

y i

x ix i+2 x i+1x i+30x i+31

5
Shift amount 31 30                            2      1      0    

.   .   .

32-to-1 Mux
Enable

Four-stage 
combinational 
shifter for 
preshifting 
an operand 
by 0 to 15 bits.

Source: Parhami
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Leading Zeros / Ones Detection or Prediction

Leading zeros prediction, with adder inputs
(0x0.x–1x–2 ...)2’s-compl and (0y0.y–1y–2 ...)2’s-compl

Ways in which leading 0s/1s are generated:

p  p  . . .  p p  g  a  a  . . .  a a  g  . . .
p  p  . . .  p p  g  a  a . . .  a a  p  . . .
p  p  . . .  p p  a  g  g . . .  g g  a  . . .
p  p  . . .  p p  a  g  g . . .  g g  p  . . .

Prediction might be done in two stages:
• Coarse estimate, used for coarse shift
• Fine tuning of estimate, used for fine shift

In this way, prediction can be 
partially overlapped with shifting

Shift amount
Post-Shifter

Significand 
    Adder

  Adjust 
Exponent

Count 
Leading 
0s/1s

Post-Shifter

Significand 
    Adder

  Adjust 
Exponent

Predict 
Leading 
0s/1s

Shift amount

Leading zeros/ones counting

Leading zeros/ones prediction.

Source: Parhami
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Floating-Point Multipliers

Speed considerations

Many multipliers produce the lower half of 
the product (rounding info) early

Need for normalizing right-shift is known at 
or near the end

Hence, rounding can be integrated in 
the generation of the upper half, 
by producing two versions of these bits

s1 × s2 ∈ [1, 4): may need postshifting

(± s1 × b e1) × (± s2 × b e2) =  (± s1 × s2) × b e1+e2

XOR     Add 
Exponents 

Unpack

Normalize
  Adjust 
Exponent 

Round

Normalize

Pack

  Multiply 
Significands 

Floating-point operands

Product

  Adjust 
Exponent 

Overflow or underflow can occur during 
multiplication or normalization

Source: Parhami
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Further references for Floating Point on FPGAs

An analysis of the double-precision floating-point FFT on FPGAs
Hemmert, K.S.; Underwood, K.D.; 13th Annual IEEE Symposium on Field-Programmable Custom 
Computing Machines, 18-20 April 2005 Page(s):171 - 180 
Architectural Modifications to Improve Floating-Point Unit Efficiency in FPGAs
Beauchamp, M.J.; Hauck, S.; Underwood, K.D.; Hemmert, K.S.; International Conference on 
Field Programmable Logic and Applications, 28-30 Aug. 2006 Page(s):1 - 6 
Double precision floating-point arithmetic on FPGAs
Paschalakis, S.; Lee, P.; IEEE International Conference on Field-Programmable Technology 
(FPT), 15-17 Dec. 2003 Page(s):352 - 358 


