
Topic 4 Slide 1PYKC 21-Jan-08 E3.05 Digital System Design

Topic 4

Arithmetic Circuits

Peter Cheung
Department of Electrical & Electronic Engineering

Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/
E-mail: p.cheung@imperial.ac.uk

Topic 4 Slide 2PYKC 21-Jan-08 E3.05 Digital System Design

About this Topic

Comparison of adder architectures on FPGAs
Multiple operands addition
Basic multipliers
Booth recoding multipliers
Fixed point vs Floating Point
Floating point Unit architectures
Example: FIR and IIR filter implementations
References
• “Computer Arithmetic”, B. Parhami, OUP
• “Computer Arithmetic Algorithms”, I. Koren, AK Peters

Topic 4 Slide 3PYKC 21-Jan-08 E3.05 Digital System Design

Different adder architectures

Revision on last year’s digital electronics II course
(http://www.ee.ic.ac.uk/hp/staff/dmb/courses/dig2/5_Adder.pdf)

Common adder architectures are:
• Ripple carry adder
• Carry lookahead adder
• Carry skip (or carry select) adder
• Carry save adder
• Parallel prefix adder (Brent & Kung’s)

Topic 4 Slide 4PYKC 21-Jan-08 E3.05 Digital System Design

Basic Ripple Carry Adder

Using full-adders in building
bit-serial and ripple-carry
adders.

x y

c

x

s

y

c

x

s

y

c out c in

0 0

0

c 0

31

31

31

31

FA

s

c c

1 1

1

1 2
FA FA

32 . . .

s 32

x

s

y

c c

i i

i

i i+1
FA Carry

FF Shift

Shift

x

y

s

(a) Bit-serial adder.

(b) Ripple-carry adder.

Clock

Source: Parhami

Topic 4 Slide 5PYKC 21-Jan-08 E3.05 Digital System Design

Critical Path Through a Ripple-Carry Adder

Critical path in a k-bit ripple-carry adder.

x

s

y

c

x

s

y

c

x

s

y

c

x

s

y

c

c out c in

0 0

0

c 0

1 1

1

1

k-2 k–2

k–2

2 k

k–1

k–1

k–1

k–1

FA FA FA FA . . .
c k–2

s k

Tripple-add = TFA(x,y→cout) + (k – 2)×TFA(cin→cout) + TFA(cin→s)

Source: Parhami

Topic 4 Slide 6PYKC 21-Jan-08 E3.05 Digital System Design

Two’s-complement adder with provisions for
detecting conditions and exceptions.

FAFA

xy 11 x0y0

c0c1

s 0s 1

FA
c2

s k–1

cout cin
...

ck–1
ck–2

s k–2

ck

xk–2yk–2xk–1yk–1

FA

Overflow

Negative

Zero

overflow2’s-compl = xk–1 yk–1 sk–1′ ∨ xk–1′ yk–1′ sk–1

overflow2’s-compl = ck ⊕ ck–1 = ck ck–1′ ∨ ck′ ck–1

Adder Conditions and Exceptions

Source: Parhami

Topic 4 Slide 7PYKC 21-Jan-08 E3.05 Digital System Design

Saturating Adders
Saturating (saturation) arithmetic:

When a result’s magnitude is too large, do not wrap around;
rather, provide the most positive or the most negative value that is
representable in the number format

Designing saturating adders

Saturating arithmetic in desirable in many DSP applications

Saturation value

Overflow

0

1

Adder

Unsigned (quite easy)

Signed (only slightly harder)

Example – In 8-bit 2’s-complement format, we have:
120 + 26 18 (wraparound); 120 +sat 26 127 (saturating)

Source: Parhami

Topic 4 Slide 8PYKC 21-Jan-08 E3.05 Digital System Design

Full Carry Lookahead

Theoretically, it is possible to derive each sum digit directly from
the inputs that affect it

Carry-lookahead adder design is simply a way of reducing the
complexity of this ideal, but impractical, arrangement by hardware
sharing among the various lookahead circuits

s0s1s2s3

y0y1y2y3 x0x1x2x3

cin

. . .

Source: Parhami

Topic 4 Slide 9PYKC 21-Jan-08 E3.05 Digital System Design

Unrolling the Carry Recurrence

Recall the generate g, propagate p signals:

Signal Radix r Binary
gi is 1 iff xi + yi ≥ r xi yi
pi is 1 iff xi + yi = r – 1 xi ⊕ yi

si (xi + yi + ci) mod r xi ⊕ yi ⊕ ci

The carry recurrence can be unrolled to obtain each carry signal directly from
inputs, rather than through propagation

ci = gi–1 + ci–1 pi–1

= gi–1 + (gi–2 + ci–2 pi–2) pi–1

= gi–1 + gi–2pi–1 + ci–2 pi–2pi–1

= gi–1 + gi–2pi–1 + gi–3 pi–2pi–1 + ci–3 pi–3 pi–2pi–1

= gi–1 + gi–2pi–1 + gi–3 pi–2pi–1 + gi–4 pi–3 pi–2pi–1 + ci–4 pi–4 pi–3 pi–2pi–1

= . . .

Source: Parhami

Topic 4 Slide 10PYKC 21-Jan-08 E3.05 Digital System Design

Carry-Lookahead Adder Design

Block generate and propagate signals

g [i,i+3] = gi+3 + gi+2pi+3 + gi+1 pi+2pi+3 + gi pi+1 pi+2pi+3

p [i,i+3] = pi pi+1 pi+2pi+3

ic
4-bit lookahead carry generator

g p g p g p g p

 [i,i+3]
p

 i+1
c

 i+2
c

 i+3c

g

iii+1i+1i+2 i+2 i+3 i+3

 [i,i+3]

Schematic diagram of a 4-bit lookahead carry generator.

Source: Parhami

Topic 4 Slide 11PYKC 21-Jan-08 E3.05 Digital System Design

A Building Block for
Carry-Lookahead Addition

Four-bit
lookahead

carry generator.

g0

g1

g2

g3

c0

c4

c1

c2

c3

p3

p2

p1

p0

gi

gi+1

g
i+2

gi+3

ci

ci+1

ci+2

ci+3

pi+3

pi+2

pi+1

pi

g

p [i,i+3]

Block Signal Generation
Intermediate Carries

[i,i+3]

Four-bit
adder

Source: Parhami

Topic 4 Slide 12PYKC 21-Jan-08 E3.05 Digital System Design

Combining Block g and p Signals

Block generate and
propagate signals can
be combined in the
same way as bit g and
p signals to form g
and p signals for
wider blocks

Combining of g and p signals of four (contiguous or
overlapping) blocks of arbitrary widths into the g and p

signals for the overall block [i0, j3].

j +1j +1 c
0

ic
4-bit lookahead carry generator

g p

0

i 0
i 1

i 2
i 3

j 0
j 1

j 2
j 3

j +1c
1c

2

g pg p g p

g p

Source: Parhami

Topic 4 Slide 13PYKC 21-Jan-08 E3.05 Digital System Design

Carry-Select Adders

Cselect-add(k) = 3Cadd(k/2) + k/2 + 1

Tselect-add(k) = Tadd(k/2) + 1

k /2-bit adder
k /2-bit adder

k - 1 k /2 k - 1 0

 0

1

k /2+1 k /2+1 k /2

1 0
Mux

k /2
c out

c k /2

c in

High k /2 bits Low k /2 bits

k /2-bit adder

Carry-select adder for k-bit numbers built from
three k/2-bit adders.

Source: Parhami

Topic 4 Slide 14PYKC 21-Jan-08 E3.05 Digital System Design

Multilevel Carry-Select Adders

k /4-bit adder k /4-bit adder

k /2 - 1 k /4 k /4 - 1 0

 0

1

k /4+1 k /4+1 k /4

1 0
Mux

k /4

k /4-bit adder

k - 1 3k /4
 0

1

k /4+1 k /4+1 k /4

1 0
Mux

k /4-bit adder

3k /4 - 1 k /2
 0

1

1 0
Mux

k /2+1

k /4

c k /2

c k /4

c out

c in

, High k /2 bits Middle k /4 bits Low k /4 bits

Two-level carry-select adder built of k/4-bit adders.
Source: Parhami

Topic 4 Slide 15PYKC 21-Jan-08 E3.05 Digital System Design

Comparison between adders on modern FPGAs

Sacristan, Rodella & Diaz, “Comparison of addition structures synthesis over
commercial FPGAs”, International Conf. on Design & Test, 2006 Page(s):413
- 417
Compare ripple carry adder (RCA), carry lookahead adder (CLA), carry select
adder (CSLA), Brent&Kung parallel prefix adder (PA-BK) and finally not
specifying any structure and let the synthesis tool decide!
Use Altera Stratix II and Xilinx Virtex-4 (not latest, but pretty recent).
Result summary:
• Mostly as expected, faster means larger
• Surprising, synthesis tools does the best: both fast and small!!
• Morale – at low level, difficult to beat modern synthesis tools

Results shown in the next four slides.

Topic 4 Slide 16PYKC 21-Jan-08 E3.05 Digital System Design

Results for Stratix II – Area

Source: Sacristan

Topic 4 Slide 17PYKC 21-Jan-08 E3.05 Digital System Design

Results for Stratix II – Delay

Source: Sacristan

Topic 4 Slide 18PYKC 21-Jan-08 E3.05 Digital System Design

Results for Virtex 4 – Area

Source: Sacristan

Topic 4 Slide 19PYKC 21-Jan-08 E3.05 Digital System Design

Results for Virtex-4 – Delay

Source: Sacristan

Topic 4 Slide 20PYKC 21-Jan-08 E3.05 Digital System Design

Multipliers and DSP Blocks

Remember that both Altera and Xilinx FPGAs have embedded multipliers with
accumulators etc.
This part of the lecture will look at some of the common multiplier hardware
(i.e. what such embedded multiplier circuits might look like).
We will also consider application of FPGA embedded multiplier for FIR Filter
implementations.
Topics to cover are:
• Basic multipliers
• Booth recoded multipliers
• Array multipliers
• FIR Filter Compiler

Topic 4 Slide 21PYKC 21-Jan-08 E3.05 Digital System Design

Multiplication of two 4-bit unsigned numbers

Notation:

a Multiplicand ak–1ak–2 . . . a1a0

x Multiplier xk–1xk–2 . . . x1x0

p Product (a × x) p2k–1p2k–2 . . . p3p2p1p0

Initially, we assume unsigned operands

Product

Partial
products
bit-matrix

a
x

p

2

x a

0
 0

1 x a 2

1
 x a 2

2
 2

2

3
 3

x a

Multiplicand
Multiplier ×

Source: Parhami

Topic 4 Slide 22PYKC 21-Jan-08 E3.05 Digital System Design

An example

Topic 4 Slide 23PYKC 21-Jan-08 E3.05 Digital System Design

Basic Sequential Multipliers

Multiplier x

Mux

Adder

0

out c

0 1

Doublewidth partial prod uct p

Multiplica nd a

Shift

Shift

(j)

j x

x a j

k

k

k

Source: Parhami

Topic 4 Slide 24PYKC 21-Jan-08 E3.05 Digital System Design

Performing Add and Shift in One Clock Cycle

Partial product p (j)

k

Unused
part o f the
multiplier x

Adder’s
carry-out

Adder’s sum

k

k – 1

k – 1

To mux control To adder

Combining the loading and shifting of the double-width
register holding the partial product and the partially used
multiplier.

Source: Parhami

Topic 4 Slide 25PYKC 21-Jan-08 E3.05 Digital System Design

Example of a detail 4x4 unsigned sequential multiplier

Topic 4 Slide 26PYKC 21-Jan-08 E3.05 Digital System Design

2’s complement signed multiplication

Topic 4 Slide 27PYKC 21-Jan-08 E3.05 Digital System Design

4x4 sequential signed multiplier circuit

Topic 4 Slide 28PYKC 21-Jan-08 E3.05 Digital System Design

Recoded Multiplier – Booth Algorithm (1)

Topic 4 Slide 29PYKC 21-Jan-08 E3.05 Digital System Design

Recoded Multiplier – Booth Algorithm (1)

Topic 4 Slide 30PYKC 21-Jan-08 E3.05 Digital System Design

Proof of Booth Algorithm

Booth Algorithm does this

2’s complement rep of x

Topic 4 Slide 31PYKC 21-Jan-08 E3.05 Digital System Design

Sequential Booth Multiplier

B±A

+/-

Topic 4 Slide 32PYKC 21-Jan-08 E3.05 Digital System Design

Multi-bit sequential multiplier

Topic 4 Slide 33PYKC 21-Jan-08 E3.05 Digital System Design

Modified Booth Algorithm (2 bits at a time)

Topic 4 Slide 34PYKC 21-Jan-08 E3.05 Digital System Design

Modified Booth Recoding (2 bits at a time)

Topic 4 Slide 35PYKC 21-Jan-08 E3.05 Digital System Design

Modified Booth Multiplier Circuit

Topic 4 Slide 36PYKC 21-Jan-08 E3.05 Digital System Design

Modified Booth Multiplier Circuit

Topic 4 Slide 37PYKC 21-Jan-08 E3.05 Digital System Design

Array Multiplier

Topic 4 Slide 38PYKC 21-Jan-08 E3.05 Digital System Design

Array Multiplier – obvious, but slow version

Topic 4 Slide 39PYKC 21-Jan-08 E3.05 Digital System Design

Array Multiplier – using carry-save adders

Topic 4 Slide 40PYKC 21-Jan-08 E3.05 Digital System Design

Embedded Multipliers in Altera Cyclone II (1)

Source:

Topic 4 Slide 41PYKC 21-Jan-08 E3.05 Digital System Design

Embedded Multipliers in Altera Cyclone II (2)

Source:

Topic 4 Slide 42PYKC 21-Jan-08 E3.05 Digital System Design

Embedded Multipliers in Altera Cyclone II (3)

Source:

Topic 4 Slide 43PYKC 21-Jan-08 E3.05 Digital System Design

Application of Multipliers: Typical DSP System

Altera and Xilinx provide FIR filter compiler support.
These examples are taken from Altera’s “FIR Compiler User’s Guide”.
MegaCore functions pre-designed core (large modules).
LPM Functions are parameterised building blocks (e.g. adder, multiplier)

Source:

Topic 4 Slide 44PYKC 21-Jan-08 E3.05 Digital System Design

Basic FIR Filter

Altera and Xilinx provide FIR filter compiler support.
These examples are taken from Altera’s “FIR Compiler User’s Guide”.Source:

Topic 4 Slide 45PYKC 21-Jan-08 E3.05 Digital System Design

Exploiting Symmetric Coefficients (7-tap)

Source:

Topic 4 Slide 46PYKC 21-Jan-08 E3.05 Digital System Design

Parallel Implementation of FIR Filter

Source:

Topic 4 Slide 47PYKC 21-Jan-08 E3.05 Digital System Design

Serial Implementation of FIR Filter

Source:

Topic 4 Slide 48PYKC 21-Jan-08 E3.05 Digital System Design

Multibit Serial Implementation of FIR Filter

Source:

Topic 4 Slide 49PYKC 21-Jan-08 E3.05 Digital System Design

FIR Filter Compiler Design Space

Source:

Topic 4 Slide 50PYKC 21-Jan-08 E3.05 Digital System Design

Floating-Point Numbers

No finite number system can represent all real numbers
Various systems can be used for a subset of real numbers

Fixed-point ± w . f
Rational ± p /q
Floating-point ± s×be

Logarithmic ± logbx

Fixed-point numbers

x = (0000 0000 . 0000 1001)two Small number
y = (1001 0000 . 0000 0000)two Large number

Low precision and/or range
Difficult arithmetic
Most common scheme
Limiting case of floating-point

Floating-point numbers

x = ± s × be or ± significand × baseexponent

Note that a floating-point number comes with two signs:

Number sign, usually represented by a separate bit
Exponent sign, usually embedded in the biased exponent

Source: Parhami

Topic 4 Slide 51PYKC 21-Jan-08 E3.05 Digital System Design

Floating-Point Number Format and Distribution

Subranges and special
values in floating-point

number representations.

E x p o n e n t :
Signed integer,
often represented
as unsigned value
by adding a bias

Range with h bits:
[–bias, 2 –1–bias]h

S i g n i f i c a n d :
Represented as a fixed-point number

Usually normalized by shifting,
so that the MSB becomes nonzero.
In radix 2, the fixed leading 1
can be removed to save one bit;
this bit is known as "hidden 1".

Sign

0 : +
1 : –

± e s
Typical floating-

point number
format.

Denser Denser Sparser Sparser

Negative numbers
FLP FLP ±0 +∞

–∞

O verflow
region

O verflow
region

Underflow
regions

Positive numbers

Underflow
example

O verflow
example

Midway
example

Typical
example

min max min max + + – – – +

Source: Parhami
Topic 4 Slide 52PYKC 21-Jan-08 E3.05 Digital System Design

The ANSI/IEEE Floating-Point Representation

Short (32-bit) format

Long (64-bit) format

Sign Exponent Significand

 8 bits ,
 bias = 127,
 –126 to 127

 11 bits ,
 bias = 1023,
 –1022 to 1023

52 bits for fractional part
(plus hidden 1 in integer part)

23 bits for fractional part
(plus hidden 1 in integer part)

IEEE 754 Standard
(now being revised to
yield IEEE 754R)

Source: Parhami

Topic 4 Slide 53PYKC 21-Jan-08 E3.05 Digital System Design

––
Feature Single /Short Double/Long
––
Word width (bits) 32 64
Significand bits 23 + 1 hidden 52 + 1 hidden
Significand range [1, 2 – 2–23] [1, 2 – 2–52]
Exponent bits 8 11
Exponent bias 127 1023
Zero (±0) e + bias = 0, f = 0 e + bias = 0, f = 0
Denormal e + bias = 0, f ≠ 0 e + bias = 0, f ≠ 0

represents ±0.f×2–126 represents ±0.f×2–1022

Infinity (±∞) e + bias = 255, f = 0 e + bias = 2047, f = 0
Not-a-number (NaN) e + bias = 255, f ≠ 0 e + bias = 2047, f ≠ 0
Ordinary number e + bias ∈ [1, 254] e + bias ∈ [1, 2046]

e ∈ [–126, 127] e ∈ [–1022, 1023]
represents 1.f × 2e represents 1.f × 2e

min 2–126 ≅ 1.2 × 10–38 2–1022 ≅ 2.2 × 10–308

max ≅ 2128 ≅ 3.4 × 1038 ≅ 21024 ≅ 1.8 × 10308

––

Overview of IEEE 754 Standard Formats

Some features of the ANSI/IEEE standard floating-point number representation formats.

Source: Parhami
Topic 4 Slide 54PYKC 21-Jan-08 E3.05 Digital System Design

Exponent Encoding

00 01 7F FE FF7E 80
0 1 127 254 255126 128

–126 0 +127–1 +1

Decimal code
Hex code

Exponent value

f = 0: Representation of ±0
f ≠ 0: Representation of denormals,

0.f × 2–126

f = 0: Representation of ±∞
f ≠ 0: Representation of NaNs

Exponent encoding in 8 bits for the single/short (32-bit) ANSI/IEEE format

Exponent encoding in
11 bits for the double/long
(64-bit) format is similar

Denser Denser Sparser Sparser

Negative numbers
FLP FLP ±0 +∞

–∞

O verflow
region

Overflow
region

Underflow
regions

Positive numbers

Underflow
example

O verflow
example

Midway
example

Typical
example

min max min max + + – – – +

1.f × 2e

Topic 4 Slide 55PYKC 21-Jan-08 E3.05 Digital System Design

Floating-Point Adders/Subtractors

-

(± s1 × b e1) + (± s2 × be2) = (± s1 × b e1) + (± s2 /b e1–e2) × b e1

= (± s1 ± s2 /b e1–e2) × b e1 = ± s × b e

Assume e1 ≥ e2; alignment shift (preshift) is needed if e1 > e2

Operands after alignment shift:
 x = 2 1.00101101
 y = 2 0.000111101101

Numbers to be added:
 x = 2 1.00101101
 y = 2 1.11101101

5 ×
×

5
×
×

Extra bits to be
rounded off

Operand with
smaller exponent
to be preshifted

Result of addition:
 s = 2 1.010010111101
 s = 2 1.01001100 Rounded sum

×
×

5

1

5
5

Example: Like signs:
Possible 1-position
normalizing right shift

Different signs:
Possible left shift by
many positions

Overflow/underflow
during addition or
normalization

Source: Parhami

Topic 4 Slide 56PYKC 21-Jan-08 E3.05 Digital System Design

FP Adder/Sub

Normalize

Add

Align significands

Unpack

Control
& sign
logic

Add/
Sub

Pack

Operands

Sum/Difference

Significands Exponents Signs

Significand Exponent Sign

x y

s

Sub

Add

Mu x

c out c in

Selective complement
and possible swap

Round and

selective complement

Normalize

Other key parts of the adder:
•Significand aligner (preshifter)
•Result normalizer (postshifter), including

leading 0s detector/predictor
•Rounding unit
•Sign logic

Converting internal to external
representation, if required, must be
done at the rounding stage

Isolate the sign, exponent, significand
Reinstate the hidden 1
Convert operands to internal format
Identify special operands, exceptions

Combine sign, exponent, significand
Hide (remove) the leading 1
Identify special outcomes, exceptions

Topic 4 Slide 57PYKC 21-Jan-08 E3.05 Digital System Design

re- and Postshifting

One bit-slice of a single-stage
pre-shifter.

x ix i+2 x i+1x i+4 x i+3x i+6 x i+5x i+8 x i+7

y iy i+2 y i+1y i+4 y i+3y i+6 y i+5y i+8 y i+7

LSB

MSB

 4-Bit
 Shift
Amount

y i

x ix i+2 x i+1x i+30x i+31

5
Shift amount 31 30 2 1 0

. . .

32-to-1 Mux
Enable

Four-stage
combinational
shifter for
preshifting
an operand
by 0 to 15 bits.

Source: Parhami

Topic 4 Slide 58PYKC 21-Jan-08 E3.05 Digital System Design

Leading Zeros / Ones Detection or Prediction

Leading zeros prediction, with adder inputs
(0x0.x–1x–2 ...)2’s-compl and (0y0.y–1y–2 ...)2’s-compl

Ways in which leading 0s/1s are generated:

p p . . . p p g a a . . . a a g . . .
p p . . . p p g a a . . . a a p . . .
p p . . . p p a g g . . . g g a . . .
p p . . . p p a g g . . . g g p . . .

Prediction might be done in two stages:
• Coarse estimate, used for coarse shift
• Fine tuning of estimate, used for fine shift

In this way, prediction can be
partially overlapped with shifting

Shift amount
Post-Shifter

Significand
 Adder

 Adjust
Exponent

Count
Leading
0s/1s

Post-Shifter

Significand
 Adder

 Adjust
Exponent

Predict
Leading
0s/1s

Shift amount

Leading zeros/ones counting

Leading zeros/ones prediction.

Source: Parhami

Topic 4 Slide 59PYKC 21-Jan-08 E3.05 Digital System Design

Floating-Point Multipliers

Speed considerations

Many multipliers produce the lower half of
the product (rounding info) early

Need for normalizing right-shift is known at
or near the end

Hence, rounding can be integrated in
the generation of the upper half,
by producing two versions of these bits

s1 × s2 ∈ [1, 4): may need postshifting

(± s1 × b e1) × (± s2 × b e2) = (± s1 × s2) × b e1+e2

XOR Add
Exponents

Unpack

Normalize
 Adjust
Exponent

Round

Normalize

Pack

 Multiply
Significands

Floating-point operands

Product

 Adjust
Exponent

Overflow or underflow can occur during
multiplication or normalization

Source: Parhami

Topic 4 Slide 60PYKC 21-Jan-08 E3.05 Digital System Design

Further references for Floating Point on FPGAs

An analysis of the double-precision floating-point FFT on FPGAs
Hemmert, K.S.; Underwood, K.D.; 13th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, 18-20 April 2005 Page(s):171 - 180
Architectural Modifications to Improve Floating-Point Unit Efficiency in FPGAs
Beauchamp, M.J.; Hauck, S.; Underwood, K.D.; Hemmert, K.S.; International Conference on
Field Programmable Logic and Applications, 28-30 Aug. 2006 Page(s):1 - 6
Double precision floating-point arithmetic on FPGAs
Paschalakis, S.; Lee, P.; IEEE International Conference on Field-Programmable Technology
(FPT), 15-17 Dec. 2003 Page(s):352 - 358

