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About this Topic

Sine/Cosine functions generation methods
Functions generation using polynomial approximation
Distributed arithmetic
• Constant coefficient filters
• Inner-product computation
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Sine/Cosine Generation

Sine and cosine functions - very common in communications 
and DSP applications
• e.g. modulation, demodulation, FFT, spectral analysis

We will consider this as an example of system level 
architecture
4 Methods are considered:-
• Recursive evaluation
• Direct Table Lookup
• Two-level table lookup
• CORDIC algorithm
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Method 1: Recursive Evaluation

Basic idea: place pole pair on unit circle:

Rewrite as difference equation:

This will oscillate at frequency ω with x(n-2) = 0
Limitations:
• Fixed frequency only
• Amplitude may grow or decay - sensitive to quantization noise
• No quadrature signal (i.e. cosine and sine together)
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Method 2: Direct Table Lookup

Store one cycle of sine wave in ROM lookup table
Two approaches to change output frequency:
• 1. Use address counter with variable clock frequency
• 2. Use address adder with fixed clock frequency

Maximum clock frequency limited by access time of ROM.
Exploit symmetry of sine wave and store one quadrant
• reduce size of ROM by a factor of 4
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entries)

k sine_out
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fout = fin/N
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+

incr. i
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Method 2: Direct Table Lookup (Example)

Example: Use embedded block RAM (EAB) in 256 x 8 bit configuration to 
store ¼ cycle of a sine table such that:

• Mem[K] = 255 * sin (π * K / 512)  for K = 0 to 255.

• Generate the other quadrants by manipulating the address and negating the 
ROM/RAM values. 

• The rule to generate the EAB address ‘reflection’ and amplitude negation
are:-

addr9 addr8 A ddress to  E A B N egation

0 0 addr[7 :0] N o

0 1 256 –  addr[7 :0] N o

1 0 addr[7 :0] Y es

1 1 256  –  addr[7 :0] Y es
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Method 2: Direct Table Lookup (example)

This works except for N=256 and 768 when addr[7:0] = 0.  

Therefore, detect this condition and force output to either +255 or –255.

Improve speed by inserting pipeline registers at dotted lines.

Numbers in circle indicate number of pipeline register stages.
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Method 3: Two level Table Lookup

Previous method still requires table of size N/4
For fine angular increment, needs very large table
Can trade-off computational block for ROM size by using two 
tables:
• 1. Coarse angle table

storing sin(α),  where α = πk/(2*M), for k = 0 to M-1

• 2. Fine angle table
storing sin(β), where β = πk/(2*M*N), for k = 0 to N-1

coarse
angle α

sin(α)

fine
angle β

sin(β)
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Method 3: Two level Table Lookup (con’t)

Now, compute
• sin(α+ β) = sin α cos β + cos α sin β

Requires two multiplies and one add

Angular resolution now improved to π/(2*M*N), or 4*M*N 
angles in one cycle

Further simplification if M is large and β ≈ 0, then
• sin(α+ β) ≈ sin α + β cos α ≈ sin α + β sin(90 – α)
• No need to have the fine angle table
• Requires only one multiply
• Introduces distortion
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Method 4: Cordic Algorithms

CORDIC stands for: COordinate Rotation DIgital Computer
Invented in 1959 by Jack E. Volder
Based on the observation :

• Rotate a unit-length vector (1,0) by an angle z

• New vector will be at (cos z, sin z)

Extended by J.S. Walther in 1971 to compute many functions of interest
Used in virtually all scientific calculators to compute trigonometric 
functions!
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Rotations and Pseudorotations

-

If we have a computationally efficient way of rotating a vector, we 
can evaluate cos, sin, and tan–1 functions

Rotation by an arbitrary angle is difficult, so use two tricks:

1. Perform psuedorotations that require simpler operations
2. Make up the desired angle z from a set of special angles

z = α (1) + α (2) + . . . + α (m)

Key ideas in CORDIC

COordinate Rotation 
DIgital Computer used 
this method in 1950s; 
modern electronic 
calculators also use it

z 

(cos  z, s in z)  

(1, 0) 

tan   y 

(1, y)  

–1 

start at (1, 0) 
rotate  by z  
get cos z, sin z 

start at (1, y) 
rotate  until y = 0   
rotation amount is tan  y –1 

Source: Parhami
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Rotating a Vector (x (i), y (i)) by the Angle α (i)

A pseudorotation step in 
CORDIC

x 

y 
Rotation 

Pseudo- 
rotation  

O 

R   (i+1) 

R   (i)  (i) α 

E  (i+1) 
E ′   (i+1) 

E  (i) 

 y   (i+1) 

 x   (i+1) 

 y   (i) 

 x   (i) 

Our strategy: Eliminate the 
terms (1 + tan2 α(i))1/2 and 
choose the angles α(i)) so 
that tan α(i) is a power of 2; 
need two shift-adds

x(i+1) = x(i) cos α(i) – y(i) sin α(i) =  (x(i) – y(i) tan α(i)) / (1 + tan2 α(i))1/2

y(i+1) = y(i) cos α(i) + x(i) sin α(i) =  (y(i) + x(i) tan α(i)) / (1 + tan2 α(i))1/2

z(i+1) = z(i) – α(i)

Recall that cos θ = 1 / (1 + tan2 θ)1/2

Source: Parhami
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Pseudorotating a Vector (x (i), y (i)) by the Angle α (i)

A pseudorotation step in 
CORDIC

x 

y 
Rotation 

Pseudo- 
rotation  

O 

R   (i+1) 

R   (i)  (i) α 

E  (i+1) 
E ′   (i+1) 

E  (i) 

 y   (i+1) 

 x   (i+1) 

 y   (i) 

 x   (i) 

Pseudorotation: Whereas a real rotation 
does not change the length R(i) of the vector, 
a pseudorotation step increases its length to:

R(i+1) = R(i) / cos α(i) = R(i) (1 + tan2 α(i))1/2

x(i+1) = x(i) – y(i) tan α(i)

y(i+1) = y(i) + x(i) tan α(i)

z(i+1) = z(i) – α(i)

Source: Parhami
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A Sequence of Rotations or Pseudorotations

After m real rotations by 
α(1), α(2) , . . . , α(m) , given x(0) = 
x, y(0) = y, and z(0) = z

x(m) = x cos(∑α(i)) – y sin(∑α(i))        
x(m) = y cos(∑α(i)) + x sin(∑α(i))        
z(m) = z – (∑α(i)) 

x(m) = K(x cos(∑α(i)) – y sin(∑α(i)))        
y(m) = K(y cos(∑α(i)) + x sin(∑α(i)))        
z(m) = z – (∑α(i)) 

where K = ∏(1 + tan2 α(i))1/2 is 
a constant if angles of rotation 
are always the same, differing 
only in sign or direction

After m pseudorotations by 
α(1), α(2) , . . . , α(m) , given x(0) = 
x, y(0) = y, and z(0) = z

α(1)

α(2)

α(3)

Question: Can we find a set of angles so 
that any angle can be synthesized from all of 
them with appropriate signs?
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Basic CORDIC Iterations

CORDIC iteration: In step i, we pseudorotate by 
an angle whose tangent is di 2–i (the angle e(i) is 
fixed, only direction di is to be picked)

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan –1 2–i

= z(i) – di e(i)

––––––––––––––––––––––––––––––––
i         
––––––––––––––––––––––––––––––––
0 45.0 0.785 398 163
1 26.6 0.463 647 609
2 14.0 0.244 978 663
3 7.1 0.124 354 994
4 3.6 0.062 418 810
5 1.8 0.031 239 833
6 0.9 0.015 623 728
7 0.4 0.007 812 341
8 0.2 0.003 906 230
9 0.1 0.001 953 123
––––––––––––––––––––––––––––––––

e(i) in degrees
(approximate)

e(i) in radians
(precise)

Value of the function e(i) = tan–1

2–i,   in degrees and radians, 
for 0 ≤ i ≤ 9 

Example: 30° angle

30.0  ≅ 45.0 – 26.6 + 14.0 
– 7.1 +  3.6  +  1.8 
– 0.9  + 0.4  – 0.2 
+ 0.1  

=   30.1 Source: Parhami

Topic 5 Slide 16PYKC 24-Jan-08 E3.05 Digital System Design

Basic CORDIC iterations

We can avoid any multiplication by choosing fixed rotation angles ±αi
such that:

Only need shifts instead of multiplications.
i

i

i
i

−−

−

=

=

2tan

2tan
1α

α

i αI tan αi = 2-i

0 45.000 1.000
1 26.565 0.500
2 14.036 0.250
3 7.125 0.125
4 3.576 0.0625
5 1.790 0.03125
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CORDIC rotation
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CORDIC Iteration complexity

Each CORDIC rotation requires:
• 2 shift operations

• 1 table lookup to find αi

• 3 additions

By rotating by the same set of angles from table (with + or - signs), the 
scaling factor K can be pre-calculated and stored in another table.
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Choosing the Angles to Force z to Zero

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan–1 2–i

= z(i) – di e(i)

–––––––––––––––––––––––––––––––
i         z(i) – di e(i) = z(i+1)

–––––––––––––––––––––––––––––––
+30.0

0 +30.0 – 45.0     = –15.0
1 –15.0 +    26.6     = +11.6
2 +11.6 – 14.0     = –2.4
3 –2.4 +      7.1     = +4.7
4 +4.7 – 3.6     = +1.1
5 +1.1 – 1.8     = –0.7
6 –0.7 +      0.9     = +0.2
7 +0.2 – 0.4     = –0.2
8 –0.2 +      0.2     = +0.0
9 +0.0 – 0.1     = –0.1
–––––––––––––––––––––––––––––––

Choosing the signs of the 
rotation angles in order to force 
z to 0 

Source: Parhami
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x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan –1 2–i

= z(i) – di e(i)

–––––––––––––––––––––––––––––––
i         z(i) – di e(i) = z(i+1)

–––––––––––––––––––––––––––––––
+30.0

0 +30.0 – 45.0     = –15.0
1 –15.0 +    26.6     = +11.6
2 +11.6 – 14.0     = –2.4
3 ………….
–––––––––––––––––––––––––––––––

y

x

x   ,y

x
–45

+26.6

–14
30

(0) (0)

(10)

x   ,y(1) (1)

x   ,y(2) (2)

x   ,y(3) (3)

The first three of 10 
pseudorotations leading from 
(x(0), y(0)) to (x(10), 0) in rotating 
by +30°. 

Geometric interpretation (first 3 rotations)

Source: Parhami
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Why Any Angle Can Be Formed from Our List

Analogy: Paying a certain amount while using all currency denominations (in positive or 
negative direction) exactly once; red values are fictitious.

$20   $10   $5   $3 $2   $1   $.50  $.25  $.20 $.10  $.05  $.03 $.02  $.01

Example: Pay $12.50
$20 – $10 + $5 – $3 + $2 – $1 – $.50 + $.25 – $.20 – $.10 + $.05 + $.03 – $.02 – $.01

Convergence is possible as long as each denomination is no greater than the sum of all 
denominations that follow it.

Domain of convergence: –$42.16 to +$42.16

We can guarantee convergence with actual denominations if we allow multiple steps at 
some values:

$20   $10   $5   $2   $2 $1   $.50  $.25  $.10  $.10 $.05  $.01  $.01  $.01  $.01 

Example: Pay $12.50
$20 – $10 + $5 – $2 – $2 + $1 + $.50+$.25–$.10–$.10–$.05+$.01–$.01+ $.01–$.01

It can be shown that in hyperbolic CORDIC, convergence is guaranteed only if certain 
“angles” are used twice.

Source: Parhami
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Using CORDIC in Rotation Mode

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan –1 2–i

= z(i) – di e(i)

For k bits of precision in results, 
k CORDIC iterations are needed, 
because tan –1 2–i ≅ 2–I  for large i

x(m) = K(x cos z – y sin z)        
y(m) = K(y cos z + x sin z)        
z(m) = 0

where K = 1.646 760 258 121 . . .

Make z converge 
to 0 by choosing 
di = sign(z(i))

0

0

Start with 

x = 1/K = 0.607 252 935 . . . 

and y = 0 
to find cos z and sin z 

Convergence of z to 0 is possible because each of the angles in our 
list is more than half the previous one or, equivalently, each is less 
than the sum of all the angles that follow it

Domain of convergence is –99.7˚ ≤ z ≤ 99.7˚, where 99.7˚ is the sum of all 
the angles in our list; the domain contains [–π/2, π/2] radians

Source: Parhami
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Compute Sine and Cosine using CORDIC

Initialise:
• z = z

• x = 1/K = 0.607252935…..
• y = 0

Iterate with di = sign(zi)
After m rotations,

)tan(/

0

)sin(

)cos(

zxy

z

zy

zx

m

m

m

≈
≈
≈
≈
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Using CORDIC in Vectoring Mode

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan –1 2–i

= z(i) – di e(i)

For k bits of precision in results, 
k CORDIC iterations are needed, 
because tan –1 2–i ≅ 2–I  for large i

x(m) = K(x2 + y2)1/2

y(m) = 0        
z(m) = z + tan –1(y /x) 

where K = 1.646 760 258 121 . . .

Make y converge to 
0 by choosing 
di = – sign(x(i)y(i))

0

Start with 

x = 1 and z = 0 

to find tan –1y

Even though the computation above always converges, one 
can use the relationship  tan –1(1/y )  =  π/2 – tan –1y
to limit the range of fixed-point numbers encountered

Other trig functions: tan z obtained from sin z and cos z via division;
inverse sine and cosine (sin –1 z and cos–1 z) discussed later

☺
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CORDIC in  Vector Mode

Initialise: z = z, x = x, y = y
Iterate with di = -sign(xi yi), which forces ym towards 0
After m rotations,

......216467602581.1

)(tan

0

)(

1

22 2
1

=

+=

=
+=

−

K
x

yzz

y

yxKx

m

m

m

☺
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Use CORDIC to compute arctan(y)

Initialise:
• z = 0

• x = 1
• y = y

Iterate with di = -sign(xi yi) = -sign(yi) 
After m rotations,

Use identity:  tan-1(1/y) = π/2 - tan-1y to limit range of numbers to 
manageable size

)(tan 1 yzm
−=

☺
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Bit-parallel iterative CORDIC

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan –1 2–i

= z(i) – di e(i)

If very high speed is not 
needed (as in a calculator), a 
single adder and one shifter 
would suffice
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Bit-parallel unrolled CORDIC
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Bit-serial CORDIC
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Practical issues

For k bits precision at output, only k iterations needed.

For large value of i, tan(2-i) ≈ 2-I

Convergence is guaranteed for angles in range:
• -99.7 ≤ z ≤ 99.7  (99.7 being the sum of all angles in table)

For angles outside this range, use trigonometric rules to convert angle in 
range.
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Generalized CORDIC

Circular, linear, and hyperbolic CORDIC.

x 

y 

O 

B   A  

  F  

 E 

  C 

 D 

μ = –1 μ = 1 μ = 0 

U  V  W  

x(i+1) =  x(i) – μdi y(i) 2–i

y(i+1) =  y(i) + di x(i) 2–i

z(i+1) =  z(i) – di e(i)

μ = 1 Circular rotations   
(basic CORDIC)
e(i) = tan –1 2–i

μ = 0 Linear rotations
e(i) = 2–i

μ = –1 Hyperbolic rotations
e(i) = tanh –1 2–i

Source: Parhami

☺
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Universal CORDIC

☺
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Universal CORDIC

☺
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Summary of Generalized CORDIC Algorithms

                         
 

For cos & sin, set x  = 1/K , y = 0  
   

 tan z = sin z / cos z  
 

For tan   , set x  = 1, z = 0   
 

–1 
 

For multip lica tion, se t y = 0  
 

For d ivision, se t z = 0  
 

  
   
 

In executing the iterations for     = –1, steps 4, 13, 40, 121, . . . , j , 3j + 1, . . .  
 

μ 
 must be repeated. These repetitions are incorporated in the constant K' be low. 

For cosh & sinh, set x  = 1/K', y = 0   
 

  
 

tanh z = sinh z / cosh z   
 exp(z) = sinh z + cosh z   
 

For tanh  , set x  = 1, z = 0   
 

–1 
 

w    = exp(t ln w) 
 

t 
 

ln w = 2 tanh    |(w  – 1)/(w  + 1)|  
 

–1 
 

Rotation: d  = sign(z    ),     
 

 i 
 

z    → 0 
 

(i) 
 

(i) 
 

e     = 
 

    = 1 
 Circular 

 

tan   2  
 

–i 
 

μ 
 

(i) 
 –1 
 

    = –1 
 Hyperbo lic  

 

μ 
 

e     = 
 

(i) 
 

tanh   2  
 

–i 
 

–1 
 

Mode →  Vectoring: d  = –sign(x    y   ),    
 

 i 
 

 (i) 
 

  (i) 
 

y    → 0  
 

(i) 
 

K(x  cos z – y sin z) 
 K(y cos z + x  sin z) 
 0 
 

x 
 y 
 z 
 

 

C 
O 
R 
D 
I 
C 

x 
 
y + xz 
 0 
 

x 
 y 
 z 
 

 

C 
O 
R 
D 
I 
C 

x 
  0 

  z + y/x  
 

x 
 y 
 z 
 

 

C 
O 
R 
D 
I 
C 

K' (x  cosh z – y s inh z) 
 K' (y cosh z + x  s inh z) 
  0 
 

x 
 y 
 z 
 

 

C 
O 
R 
D 
I 
C 

                         
 

0 
 z + tan   (y /x ) 
 

–1 
 

x 
 y 
 z 
 

 

C 
O 
R 
D 
I 
C 

K √  x    + y 
 

2 
 

2 
 

0 
 z + tanh   (y /x ) 
 

–1 
 
  
 

x 
 y 
 z 
 

 

C 
O 
R 
D 
I 
C 

K' √  x    – y 
 

2 
 

 2 
 

  
 
cos   w  = tan   [√1 – w   / w]  
 

2 
 

–1 
 

–1 
 

s in   w  = tan   [w / √1 – w   ]  
 

 2 
 

–1 
 

–1 
 

√w  = √(w  + 1/4)   – (w  – 1/4)  
 

2 
 

 2 
 

cosh    w  = ln(w  + √  1 – w   )  
 

–1 
 

 2 
   

 
s inh    w  =  ln(w  + √  1 + w   )  
 

–1 
 

 2 
 

Note →  

e   = 2 
 

    = 0 
 Linear 
 

μ 
 

(i) 
 

 –i 
 

x(i+1) = x(i) – μdi y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di e(i)

μ ∈ {–1, 0, 1}  
di ∈ {–1, 1}

K = 1.646 760 258 121 ...
1/K = .607 252 935 009 ...
K' = .8281593609602 ...
1/K'= 1.207497067763 ...

☺
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Use of Approximating Functions

Convert the problem of evaluating the function f to that of function g
approximating f, perhaps with a few pre- and postprocessing operations 

Approximating polynomials need only additions and multiplications 

Polynomial approximations can be derived from various schemes  

The Taylor-series expansion of f(x) about x = a is

f(x) = ∑ j=0 to ∞ f (j) (a) (x – a) j / j! 

The error due to omitting terms of degree > m is:

f (m+1) (a + μ(x – a)) (x – a)m+1 / (m + 1)! 0 < μ < 1

Setting a = 0 yields the Maclaurin-series expansion

f(x) = ∑ j=0 to ∞ f (j) (0) x j / j! 

and its corresponding error bound:

f (m+1) (μx) xm+1 / (m + 1)! 0 < μ < 1
Source: Parhami
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Some Polynomial Approximations

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Func Polynomial approximation Conditions
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

1/x 1 + y + y 2 + y 3 + .  .  . + y i + .  .  . 0<x<2, y=1–x

ex 1 + x /1! + x 2/2! + x 3/3! + .  .  . + x i /i ! + .  .  .

ln x –y – y 2/2 – y 3/3 – y 4/4 – .  .  . – y i /i – .  .  . 0<x≤ 2, y=1–x

ln x 2[z + z 3/3 + z 5/5 + .  .  . + z 2i+1/(2i+ 1) + .  .  . ] x> 0, z= x–1
x+1

sin x x –x 3/3!+x 5/5!–x 7/7!+ . . . +(–1)i x2i+1/(2i+1)!+ . . .

cos x 1–x 2/2!+x 4/4!–x 6/6!+ .  .  . +(–1)i x2i/(2i )!+ .  .  .

tan–1x x –x 3/3+x 5/5–x 7/7+ . . . +(–1)i x2i+1/(2i+1)+ . . . –1 < x < 1

sinh x x+x 3/3!+x 5/5!+x 7/7!+ .  .  . +x2i+1/(2i+1)!+ .  .  .

cosh x 1+ x 2/2!+x 4/4!+ x 6/6!+ .  .  . +x2i/(2i )!+ .  .  .

tanh–1x x+x 3/3+x 5/5+x 7/7+ .  .  . + x2i+1/(2i+1)+ .  .  . –1 < x < 1
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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Function Evaluation via Divide-and-Conquer

Let x in [0, 4) be the (l +2)-bit significand of a floating-point number or its 
shifted version. Divide x into two chunks x H and x L:

x = x H + 2–t x L

0 ≤ xH < 4 t + 2  bits

0 ≤ x L < 1 l – t bits

t bits

x H in [0, 4) x L in [0, 1)

The Taylor-series expansion of f(x) about x = xH is

f(x)  =  ∑ j=0 to ∞ f (j) (x H) (2–t x L) j / j! 

A linear approximation is obtained by taking only the first two terms

f(x)  ≅ f (xH) + 2–t x L f′ (xH) 

If t is not too large, f and/or f′ (and other derivatives of f, if needed) can be 
evaluated via table lookup

Source: Parhami
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Approximation by the Ratio of Two Polynomials

Example, yielding good results for many elementary functions 

f(x) ≅ a(5)x5 + a(4)x4 + a(3)x3 + a(2)x2 + a(1)x + a(0)

b(5)x5 + b(4)x4 + b(3)x3 + b(2)x2 + b(1)x + b(0)  

Using Horner’s method, such a “rational approximation” needs 10 
multiplications, 10 additions, and 1 division

Source: Parhami
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What is a Digital Biquad Filter?

Transfer function:

This can be rearranged as a difference equation:-

This can be generalised to an inner-product calculation:
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Distributed Arithmetic (1)

Let us express xk in its 2’s complement binary form:

Then:
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Distributed Arithmetic (2)

Let us expand this to:
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Use ROM as table lookup 

We can avoid any multiplication by table lookup:
• Use (x1i, x2i, x3i, ... xNi) as address to a ROM

• Store pre-calculated partial product for each line in ROM:

We can calculate y three operations: ROM lookup, shift, add/subtract:
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Bit-Serial Implementation
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Source: Parhami
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