Topic 9

JTAG Boundary-Scan

Peter Cheung
Department of Electrical & Electronic Engineering
Imperial College London

(Based on Ben Bennetts' Tutorial)

URL: www.ee.imperial.ac.uk/pcheung/ E-mail: p.cheung@imperial.ac.uk

PYKC 3-Mar-08 E3.05 Digital System Design Topic 9 Slide 1

Sources & Background

- ◆ JTAG Boundary Scan is from IEEE Standard 1149.1
- Most of slides here are based on the document "Boundary Scan Tutorial" by Ben Bennetts, for ASSET InterTech Inc.,

ww.asset-intertech.com/pdfs/boundaryscan_tutorial.pdf

PYKC 3-Mar-08 E3.05 Digital System Design Topic 9 Slide 2

The old way

In-Circuit & Functional Board Test

Problem with modern packaging styles

PYKC 3-Mar-08 E3.05 Digital System Design Topic 9 Slide 3 PYKC 3-Mar-08 E3.05 Digital System Design Topic 9 Slide 3

Problem with multi-layer PCB

Motivation of Boundary Scan

- □Basic motivation was miniaturization of device packaging, leading to ...
- □surface mount packaging styles, leading to ...
- □double sided boards, leading to ...
- ☐ multi-layer boards, leading to ...
- ☐ a reduction of physical access test lands for traditional bed-of-nail in-circuit testers

□Solution: add boundary-scan registers to the devices

PYKC 3-Mar-08

E3.05 Digital System Design

Topic 9 Slide 6

Principle of Boundary Scan

E3.05 Digital System Design

The Boundary Scan Path

PYKC 3-Mar-08 E3.05 Digital System Design

Topic 9 Slide 8

PYKC 3-Mar-08

Topic 9 Slide 5

Basic Boundary Scan Cell

Defect Coverage: Bed-of-nails

PYKC 3-Mar-08 E3.05 Digital System Design Topic 9 Slide 10

Defect Coverage: Extest

In this mode (EXternal TEST), defects covered: driver (TX) scan cell - driver amp - bond wire - leg - solder interconnect

- solder - leg - bond wire - driver amp - sensor (RX) scan cell

Defect Coverage: Intest

In this mode (INternal TEST), defects covered: driver scan cell - device - sensor scan cell

1149.1 Chip Architecture

PYKC 3-Mar-08 Topic 9 Slide 13 E3.05 Digital System Design

Mandatory Instructions and Reset Modes

Target Register Modes

Open-Circuit TDI, TMS and TRST*?

E3.05 Digital System Design

Instruction Register

Standard Instructions

Instruction	Selected Data Register
Mandatory: <u>Extest</u> <u>Bypass</u> <u>Sample</u> <u>Preload</u>	Boundary scan (formerly all-0s code) Bypass (initialised state, all-1s code) Boundary scan (device in functional mode) Boundary scan (device in functional mode)
Optional: Intest Idcode Usercode Runbist Clamp HighZ	Boundary scan Identification (initialised state if present) Identification (for PLDs) Result register Bypass (output pins in safe state) Bypass (output pins in high-Z state)

NB. All unused instruction codes must default to **Bypass**

PYKC 3-Mar-08 Topic 9 Slide 18 E3.05 Digital System Design

Extest Instructions

Bypass Instruction

PYKC 3-Mar-08 E3.05 Digital System Design

Sample and Preload Instruction

Intest Instruction

Idcode Instruction

Usercode Instruction

E3.05 Digital System Design

RunBIST Instruction

Clamp Instruction

HighZ Instruction

Test Access Port (TAP)

E3.05 Digital System Design

TAP Controller

TAP Controller State Diagram

Bypass Register

- ☐ One-bit shift register, selected by the *Bypass* instruction
- ☐ Captures a hard-wired 0
- □Note: in the *Test-Logic/Reset* state, the Bypass register is the default register if no Identification Register present

Identification Register

<u>Identification Register</u>

- □32-bit shift register
- ☐ Selected by *Idcode* and *Usercode* instruction
- ■No parallel output
- ☐ Captures a hard-wired 32-bit word
- ☐ Main function: identify device owner and part number
- □Note: *Idcode* is power-up instruction if Identification Register is present, else *Bypass*

Topic 9 Slide 31

PYKC 3-Mar-08

Boundary Scan Register

- ☐ Shift register with boundary-scan cells on:
 - device input pins
 - device output pins
 - control of three-state outputs
 - control of bidirectional cells
- □ Selected by the <u>Extest, Intest</u>, <u>Preload</u> and <u>Sample</u> instructions

PYKC 3-Mar-08 E3.05 Digital System Design Topic 9 Slide 33

Boundary Scan Cell OZ

On all device signal IO, control of three-state: **dual-mode input signal** or additional scan cell

PYKC 3-Mar-08 E3.05 Digital System Design Topic 9 Slide 34

Boundary Scan Cell IO

On control of bidirectional IO: dual-mode input signal

Application at Board Level

Board Defects

- ■Missing component, wrong component, mis-oriented component, broken track, shorted tracks, pin-to-solder open circuit, pin-to-pin solder shorts
- Number of 2-net short circuit faults between k interconnects = k(k-1)/2
- □ Equivalent fault models for shorts: bridging of type wired-AND and wired-OR
- □ Open circuits are modelled down-stream as stuck-at-1 or stuck-at-0 faults

PYKC 3-Mar-08 E3.05 Digital System Design Topic 9 Slide 37

Example of faults

PYKC 3-Mar-08 E3.05 Digital System Design Topic 9 Slide 38

Generating Open and Short Test

How many tests are needed?

Determine a set of tests to detect all:

- · open circuits, modelled as any net s-a-1 and s-a-0, and
- short circuits, modelled as all 2-net shorts of type wired-AND and wired-OR i.e. {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}

Building the tests

Determine a set of tests to detect all:

- open circuits, modelled as any net s-a-1 and s-a-0, and
- * short circuits, modelled as all 2-net shorts of type wired-AND and wired-OR
 i.e. {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}

PYKC 3-Mar-08 E3.05 Digital System Design Topic 9 Slide 41

Number of Tests

Number of tests

- = Number of bits in the code
- = ceil $log_2(k + 2)$, k = number of interconnects
- = 13 for k = 8000 interconnects

PYKC 3-Mar-08 E3.05 Digital System Design Topic 9 Slide 42

Testing non-Boundary Scan cluster

- □On modern boards, most non-boundary-scan devices are simple pass-thru devices e.g. line drivers
- □Consequently, tests for presence, orientation and bonding are easily generated and easily applied via the embracing boundary-scan devices

Combining BS and Nails

- Use ICT nails to access uncontrollable/unobservable cluster-internal nets
- Select the real-nail locations on non-BS nets according to access to:
 - strategic disables for guarding or preventing bus conflicts.
 - buried nets in non-embraced clusters
 - other key control signals e.g. O_Enab, Bidir or 3-state control signals

 \odot

RAM Array Testing via Boundary Scan

Tool Flow for Boundary Scan Tests

PYKC 3-Mar-08 Topic 9 Slide 46 E3.05 Digital System Design

Hardware Requirement

E3.05 Digital System Design

PYKC 3-Mar-08

PYKC 3-Mar-08

Where are we today?

Topic 9 Slide 48 E3.05 Digital System Design

E3.05 Digital System Design

Topic 9 Slide 47

Topic 9 Slide 45

Spread of Design-for-Test (DFT)

