JTAG (IEEE 1149.1/P1149.4) Tutorial - Introductory

Agenda

- What Is JTAG? (5 minutes)
- The Increasing Problem of Test (5 minutes)
- Conventional Methods of Test (10 minutes)
- The Boundary-Scan Idea (15 minutes)
- The Boundary-Scan Architecture (15 minutes)
- Typical Applications (15 minutes)
 - Interconnect Testing
 - Logic Cluster Testing
 - Memory Testing
 - System-Level Test
- Real JTAG Applications (10 minutes)
- For More Information (5 minutes)
- Q & A (10 minutes)

What Is JTAG?

- Standard Test Access Port...
- ...and Boundary-Scan Architecture

Standard Test Access Port...

- Developed by Joint Test Action Group (over 200 SC, test, and system vendors) starting in mid '80's
- Sanctioned by IEEE as Std 1149.1 Test Access Port and Boundary-Scan Architecture in 1990
- Solution: Build test facilities/test points into chips
- Focus: Ensure compatibility between all compliant ICs

...and Boundary-Scan Architecture

- Scan effectively partitions digital logic to facilitate control and observation of its function
- Chip-Internal Scan: Partitions chips at storage cells (latches/flip-flops) to effectively partition sequential logic into clusters of combinational logic
- Boundary-Scan: Partitions boards at chip I/Os for control and observation of board-level nodes
The Increasing Problem of Test

The Incredible Shrinking Board
- Miniaturization results in loss of test access
- Miniaturization results in loss of test access

The Ever-Expanding Chip
- Increasing integration at chip level complicates controllability

Can’t Afford Not To Test
- Cost will increase by a factor of ten as fault finding moves from one level of complexity to the next. The result:
 - Reduced Profit Margins
 - Delayed Product Introduction
 - Dissatisfied Customers

Conventional Methods of Board Test
- Functional Test ('Edge-Connector' Test)
 - Based on board function, rather than structure
 - Test generation primarily manual
 - Test access limited to primary I/O only

Conventional Methods of Test
Conventional Methods of Board Test

In-Circuit Test ('Bed-of-Nails' Test)

- Based on board structure, but limited by chip complexity
- Expensive testers and fixtures required
- Test access limited by:
 - Fine pitch packages
 - Double-sided boards
 - Conformal coating
 - MCMs

In-Circuit Test
('Bed-of-Nails' Test)

- Chip function can be ignored for shorts testing
- Chip function must be considered for continuity test
- Test generation, though automated, requires ICT models

The **Boundary-Scan Idea**

- 'In-Circuit' test points moved onto the silicon, creating 'Virtual Nails'
- Boundary scan cells bound each net, providing for continuity testing
- Observe/Control cells provide for test and normal function

Boundary Scan Method of Board Test

- Based on board structure; Not limited by chip function/complexity
- Test access is not limited by board physical factors
Boundary Scan Method of Board Test

- Chip function need not be considered for board test (shorted/open nets)
- Test generation is highly automated; Simple ‘In-Circuit Library’ models (BSDL) are vendor-supplied or EDA-generated

The Boundary Scan Cell

- CORE
- NO (Normal Output)
- SI (Serial Input)
- SO (Serial Output)

The Control Architecture

- Boundary scan and other test data registers operate under control of instruction register
- Data is scanned from TDI to TDO through selected test data register or instruction register under control of Test Access Port (TAP) controller
- TAP operates synchronously to TCK using TMS for state selection

The Test Access Port Controller

- 16-state TAP provides 4 major operations: RESET, RUN-TEST, SCAN-DR, SCAN-IR
- Scans consist of 3 primary steps: CAPTURE, SHIFT, UPDATE

The Extest Instruction (REQUIRED)

- Provides for test external to chip, such as interconnect test
- Output pins operate in test mode, driven from contents of BSC update latch
- Input data captured in BSC scan latches prior to shift operation
- Shift operation allows test response to be observed at TDO while next test stimulus inserted at TDI
- Following shift operation, new test stimulus transferred to BSC update latches

The Sample/Preload Instruction (REQUIRED)

- Provides means to preload boundary before entry to test mode
- Output and input pins operate in normal mode
- Input pin data and core logic output data captured in BSC scan latches
- Shift operation allows test response to be observed while next test stimulus inserted at TDI
- Following shift operation, new stimulus transferred to BSC update latches
The Bypass Instruction

(REQUIRED)

- Provides for abbreviated scan path through chip
- Output and input pins operate in normal mode
- The one-bit bypass register is selected for scans
- Mandatory that an all-ones value updated into the IR decodes to Bypass, as well as any opcodes which are otherwise undefined

Typical JTAG Applications

Interconnect Test

Full B/S Board

- All nets bound by BSC's and/or primary I/O requiring no physical access
- Parallel access reduced to card edge only
- Test generation and application fast and easy

Partial B/S Board

- Not all nets are bound by boundary scan and/or primary I/O, perhaps requiring some ICT access
- Expense and complexity reduced for test generation and test application for chips/nets with B/S access
- Cluster testing may be used to access non-scan nets

Logic Cluster Test

- Random-logic cluster is bound by boundary-scanable chips
- Deterministic test stimulus (ATPG-generated) can be driven to cluster from B/S outputs
- Test response can be captured at B/S inputs
- BIST methods (PRPG/PSA) can be used for increased test throughput and near “At-speed” performance
Memory Test

- Memory array bound by boundary scan chips
- Automatic test patterns can be generated and driven from B/S outputs
- Test response can be captured at B/S inputs
- Transceivers can test for net shorts w/o memory R/W
- BIST methods (PRPG/PSA) can be used for increased test throughput

System-Level Test

- TAP-addressable interface unit extends JTAG access beyond board-level
- System-level test
- System design verification
- Sys integration (Mfg test)
- Sys self-test (Field Svc)
- Supports in place board test and board-to-board test
- Allows reuse of device/board test data

Real Applications of the TAP

- Scan access to chips, boards, systems for:
 - Design verification/debug
 - Manufacturing test
 - Hardware/software integration
 - Field test/diagnostics
- Access built-in self-test (BIST)
- Access on-chip/in-circuit emulation (ONCE/ICE)
- Access in-system programming (ISP) of PLDs/EEPROMs
- Let your imagination run wild!!!

Real JTAG Applications

- Provides control and observation of system under test without need for physical access
 - Ease of set-up for test
 - Can be used in standard system configuration (no need for card extenders, etc.)
 - Can be used in environmental chambers
 - Can access on-chip emulation for software/debug
 - Can access ISP for code download/offload/changes
Manufacturing Test

- Provides test and diagnostic capabilities of in-circuit test without need/expense of physical access
- Improved fault coverage/diagnostic without large capital expense
- Highly automated test generation reduces test development time

System Configuration Maintenance

- Provides low-level test access within configured systems for:
 - In-house system integration
 - Fielded-system test and diagnostics
 - Built-in self-test
 - In-field upgradability via ISP, etc.
 - Remote field test, diagnostic and upgrade

IEEE Standards

Call (800) 678-IEEE to ORDER

- The official document which specifies the international standard for a test access port and boundary-scan architecture. Informally known as the JTAG standard, it was officially ratified by the IEEE in February 1990. Since, it has been supplemented twice. The first supplement, ratified in June 1993, is included in the referenced document. The second supplement is currently a separate document, as referenced below.
- The official document which specifies the international standard for a boundary-scan description language. This supplement to IEEE Std 1149.1-1990 was ratified in September 1994.

Abbreviations/Acronyms

- **ASCII** - Application-Specific Integrated Circuit
- **ASP** - Addressable Scan Port
- **ATE** - Automatic Test Equipment
- **ATPG** - Automatic Test Pattern Generation
- **BST** - Built-In Self-Test
- **B/S** - Boundary-Scan
- **BSR** - Boundary-Scan Register
- **BSDL** - Boundary-Scan Description Language
- **BIST** - Built-In Self-Test
- **CAE** - Computer-Aided Engineering
- **DFT** - Design-for-Test
- **DR** - Data Register
- **DSP** - Digital Signal Processing/Processor
- **EDA** - Electronic Design Automation
- **eTBC** - Embedded Test Bus Controller
- **FFGA** - Field-Programmable Gate Array
- **HSDL** - Hierarchical Scan Description Language
- **ICE** - In-Circuit Emulation
- **ICT** - In-Circuit Test
- **ISP** - In-System Programming
- **ITAG** - Joint Test Action Group
- **ITP** - Instruction-Register Programming
- **MCM** - Multi-Chip Module
- **Mfg** - Manufacturing
- **MP** - Multi-processor
- **PCB** - Printed Circuit Board
- **PBC** - Programmable Logic Device
- **PPG** - Pseudo-Random Pattern Generation
- **PSA** - Parallel Signature Analysis
- **PWB** - Printed Wiring Board
- **SVF** - Serial Vector Format
- **SVF** - Synthetic Vector Format
- **TAP** - Test Access Port
- **TBC** - Test Bus Controller
- **TCK** - Test Clock
- **TDR** - Test Date Input
- **TDO** - Test Data Output
- **TMS** - Test Mode Select
- **TST** - Test Reset
- **UUT** - Unit Under Test