
Application Report
SPRA702 - November 2000

1

Data Encryption Standard (DES) Implementation
on the TMS320C6000

R. Stephen Preissig C6000 Applications

ABSTRACT

This application report studies the implementation of the Data Encryption Standard (DES) on
the TMS320C6000 family of processors. C source code from the public domain was
optimized using the version 3.01 Optimizing C Compiler. Data rates on the C6201 (200 MHz)
are measured at 53 Mbits per second for DES and 22 Mbits per second for triple-DES. Data
rates on the C6211 (150 MHz) device are measured at 39 Mbits per second for DES and 18
Mbits per second for triple-DES. This application note details the feedback generated by the
Optimizing C Compiler and the corresponding methods used to optimize DES for the C6201
and C6211. Discussion of the structure of the DES algorithm is provided only as necessary
to elucidate the optimization methods employed, with reference to more detailed
descriptions.

Contents

1 Introduction 2.
1.1 The Data Encryption Standard (DES) 2.
1.2 Modes of Operation for Encryption Algorithms 3.
1.3 Implementation of DES 5.

2 Methods 7.
2.1 Configuration 7.
2.2 Core Algorithm Optimization Methods 8.
2.3 Operational Modes Optimization Methods 13.
2.4 Memory Structure Optimization Methods 14.

3 Results 16.
3.1 TMS320C6211 DSP Starter Kit 16.
3.2 TMS320C6201 Evaluation Module 18.
3.3 Comparison to Infinite Memory Model 19.

4 Conclusion 19.

5 References 20.

TMS320C6000 is a trademark of Texas Instruments.

SPRA702

2 Data Encryption Standard (DES) Implementation on the TMS320C6000

List of Figures

Figure 1. Types of Ciphers: a) Block Cipher, b) Stream Cipher 4.
Figure 2. Modes of Operation for Block Ciphers: a) Electronic Code Book, b) Cipher Block

 Chaining, c) Ouput-Feedback, d) Cipher-Feedback 5.
Figure 3. a) DES Core Algorithm, b) Single Round Expanded 6.
Figure 4. Compiler Feedback for DES Core Algorithm, 1 Channel 9.
Figure 5. Loop Carry Path for DES Core Algorithm 11.
Figure 6. Compiler Feedback for DES Core Algorithm, 3 Channel 12.

List of Tables

Table 1. Key Strength versus Modern Computers 3.
Table 2. Explanation of Compiler Options Used 8.
Table 3. Memory Required for DES Core Algorithms 16.
Table 4. DES Mode Cycle Counts, Measured on TMS320C6211 17.
Table 5. DES Mode Data Rates, Calculated for TMS320C6211 17.
Table 6. DES Mode Cycle Counts, Measured onTMS320C6201 18.
Table 7. DES Mode Data Rates, Calculated for TMS320C6201 18.
Table 8. Memory Efficiency for the TMS320C6201 and TMS320C6211 19.

1 Introduction

Security is a prevalent concern in information and data systems of all types. Historically, military
and national security issues drove the need for secure communications. Recently, security
issues have pervaded the business and private sectors. E-commerce has driven the need for
secure internet communications. Many businesses have firewalls to protect internal corporate
information from competitors. In the private sector, personal privacy is a growing concern.
Products are available to scramble both e-mail and telephone communications.

One means of providing security in communications is through encryption. By encryption, data is
transformed in a way that it is rendered unrecognizable. Only by decryption can this data be
recovered. Ostensibly, the process of decryption can only be performed correctly by the
intended recipient(s). The validity of this assertion determines the “strength” or “security” of the
encryption scheme.

Many communications products incorporate encryption as a feature to provide security. This
application report studies the implementation of one of the most historically famous and widely
implemented encryption algorithms, the Data Encryption Standard (DES). Implementation of
DES is studied on the Texas Instruments TMS320C6000 family of processors.

Since the C6000 family is the DSP industry’s performance leader, it efficiently implements not
only DES, but the mathematically intensive communications algorithms for which DES is often a
complement. Many communications solutions are able to upgrade their products to incorporate
an encryption feature while maintaining the same channel density of the original solution. In
some cases it is necessary to upgrade to one of the higher performing devices in the constantly
growing C6000 family, but in lower data rate applications, it is possible to add encryption on the
same processor which is already used. This allows the addition of encryption functionality with
no extra manufacturing cost, and no increase in the board space required.

SPRA702

3 Data Encryption Standard (DES) Implementation on the TMS320C6000

The TMS320C6000 family provides an excellent platform for encryption. A primary concern in
encryption applications is the broad and rapidly changing field of encryption standards. Since it
is a re-programmable device, the C6000 can be programmed with a library of encryption
standards. If an unknown encryption standard is encountered, the new standard may be
downloaded and added to this library.

The re-programmability is augmented by the C6000 family’s industry leading compiler tools.
Emerging encryption standards may be rapidly integrated. As the following application report
demonstrates, C code may be optimized quickly and efficiently using the compiler tools’
optimization feedback. This is especially useful because many encryption algorithms are
available, downloadable for free as C code, from the public domain.

1.1 The Data Encryption Standard (DES)

Developed in 1974 by IBM in cooperation with the National Securities Agency (NSA), DES has
been the worldwide encryption standard for more than 20 years. For these 20 years it has held
up against cryptanalysis remarkably well and is still secure against all but possibly the most
powerful of adversaries [4]. Because of its prevalence throughout the encryption market, DES is
an excellent interoperability standard between different encryption equipment.

The predominant weakness of DES is its 56-bit key which, more than sufficient for the time
period in which it was developed, has become insufficient to protect against brute-force attack
by modern computers [5] (see table 1). As a result of the need for a greater encryption strength,
DES evolved into triple-DES. Triple-DES encrypts using three 56-bit keys, for an encryption
strength equivalent to a 168-bit key. This implementation, however, requires three times as
many rounds for encryption and decryption and highlights a second weakness of DES – speed.
DES was developed for implementation on hardware, and DES implementations in software are
often less efficient than other standards which have been developed with software performance
in mind.

As is highlighted in the Results section of this application report, however, the C6000 core is
able to achieve very impressive data rates for DES and triple-DES in software. Data rates on the
C6201 (200 MHz) are measured as high as 53 Mbits per second for DES and 22 Mbits per
second for triple-DES. Data rates on the C6211 (150 MHz) device are measured as high as 39
Mbits per second for DES and 18 Mbits per second for triple-DES. On a 300 MHz device such
as the C6203, we can extrapolate data rates of 80 Mbits per second for DES and 33 Mbits per
second for triple-DES.

This performance is typically more than sufficient for multichannel applications involving 8 Kbit
per second vocoders and/or 56 Kbytes per second modems. Even DES encryption at the full
G.lite ADSL rate of 1.5 Mbytes per second requires less than 50 MHz performance on the
C6000 core and could be added to an application with a simple upgrade from C6201 to the
C6202 or from the C6202 to the C6203. Due to the C6000 platform’s strong performance in
multi-channel communications applications, DES may be implemented as part of a one-chip
re-programmable multi-channel solution. This provides great savings in board space, cost,
power consumption and design time. Furthermore, because the solution is re-programmable, it
may be easily evolved to match the rapidly changing encryption market.

SPRA702

4 Data Encryption Standard (DES) Implementation on the TMS320C6000

Table 1. Key Strength versus Modern Computers

Type of Attacker Budget
Time per key recovered,

40 bits
Time per key recovered,

50 bits

Pedestrian hacker $400 1 week infeasible

Small Business $10,000 12 minutes 556 days

Corporate Department $300,000 0.18 seconds 3 hours

Big Company $10,000,000 0.005 seconds 6 minutes

Intelligence Agency $300,000,000 0.002 seconds 12 seconds

1.2 Modes of Operation for Encryption Algorithms

DES belongs to a category of ciphers called block ciphers. Block ciphers, as opposed to stream
ciphers, encrypt messages by separating them into blocks and encrypting each block separately.
Stream ciphers, on the other hand, operate on streams of data one bit at a time as a continuous
stream.

DES encrypts 64-bit blocks of plaintext into 64-bit blocks of ciphertext. Plaintext, used in the
context of cryptography, is the name commonly given to the body of a message before it is
encrypted, i.e. the unaltered text of the message which is to be sent. Likewise, ciphertext is the
name commonly given to the encrypted version of the message body which is meant to be
indecipherable to any person who does not have the decryption key.

Hello, Jane. It was nice seeing you...

Hello, J ane. It was nic
Key

Encription
algorithm

8qw$Pc;

Encription

wK5m\lb

algorithm

Key

Encription

Gio#Iq7

algorithm

Key

8qw$Pcj wK5m\lb Gio#q7 Bb?2i q Ja...

Hello, Jane. It was nice seeing you...

Key

Key
stream

Key stream
generator

8qw$Pcj wK5m\lb Gio#q7 Bb?2i q Ja...

a b

Figure 1. Types of Ciphers: a) Block Cipher, b) Stream Cipher

The simplest implementation of a block cipher is to separate the plaintext into contiguous blocks,
encrypt each block into ciphertext blocks, and group these ciphertext blocks together as the
ciphertext output. This mode of operation is referred to as Electronic Code Book (ECB) mode
(see Figure 2A). The distinguishing property of this mode is that identical blocks of plaintext
always encrypt to the same ciphertext. This is undesirable in some applications.

SPRA702

5 Data Encryption Standard (DES) Implementation on the TMS320C6000

It is possible to introduce feedback between blocks by feeding the results of the previous
encryption block into the input of the current block. The first block of feedback is a randomly
generated block called the initialization vector. When this is done, each ciphertext block is not
only dependent on the plaintext block that generated it but on each of the preceeding blocks as
well, including the initialization vector. Identical plaintext blocks will now only encrypt to the same
ciphertext block if each of the proceeding blocks are identical and the initialization vectors are
identical. This mode of operation is referred to as Cipher Block Chaining (CBC) mode (See
Figure 2B).

E

Pi–1

Ci–1 Ci

Pi

E

Ci+1

Pi+1

E

a

Ci–1

Pi–1

E

Ci

E

Pi

Ci+1

E

Pi+1

b

E

Pi–1

Ci–1

E

Pi

Ci

a

E

Pi+1

Ci+1

E

Pi–1

Ci–1

E

Pi

Ci

Pi+1

Ci+1

d

Figure 2. Modes of Operation for Block Ciphers: a) Electronic Code Book, b) Cipher Block
Chaining, c) Ouput-Feedback, d) Cipher-Feedback

Other modes of operation exist as well. Two other common modes, Output Feed Back (OFB)
mode and Cipher Feed Back (CFB) modes use a block encryption algorithm to generate a
stream cipher (see Figure 3C,D). Only ECB and CBC modes are examined in this application
report. For details on other modes of operation, as well as a more in-dept discussion of the ECB
and CBC modes of operation, see reference [4], Bruce Schneider’s “Applied Cryptography”.

1.3 Implementation of DES

DES relies upon the encryption techniques of confusion and diffusion. Confusion is
accomplished through substitution. Specially chosen sections of data are substituted for
corresponding sections from the original data. The choice of the substituted data is based upon
the key and the original plaintext. Diffusion is accomplished through permutation. The data is
permuted by rearranging the order of the various sections. These permutations, like the
substitutions, are based upon the key and the original plaintext.

SPRA702

6 Data Encryption Standard (DES) Implementation on the TMS320C6000

The substitutions and permutations are specified by the DES algorithm. Chosen sections of the
key and the data are manipulated mathematically and then used as the input to a look-up table.
In DES these tables are called the S-boxes and the P-boxes, for the substitution tables and the
permutation tables, respectively. In software these look-up tables are realized as arrays and
key/data input is used as the index to the array. Usually the S- and P-boxes are combined so
that the substitution and following permutation for each round can be done with a single look-up.

In order to calculate the inputs to the S- and P-box arrays, portions of the data are XORed with
portions of the key. One of the 32-bit halves of the 64-bit data and the 56-bit key are used.
Because the key is longer than the data half, the 32-bit data half is sent through an expansion
permutation which rearranges its bits, repeating certain bits, to form a 48-bit product. Similarly
the 56-bit key undergoes a compression permutation which rearranges its bits, discarding
certain bits, to form a 48-bit product. The S- and P-box look-ups and the calculations upon the
key and data which generate the inputs to these table look-ups constitute a single round of DES
(see Figure 3B).

Plaintext

IP

Lo Ro

�

Key

K1

One DES
round

L1 R1

K2�

K16

L16 R16

�

IP–1

Cyphertext

Expansion
permutation

S–box
substitution

P–box
permutation

RiLi

Li–1 Ri–1 Key

Shift Shift

S–box
substitution

Ki

Key

a b

Figure 3. a) DES Core Algorithm, b) Single Round Expanded

This same process of S- and P-box substitution and permutation is repeated sixteen times,
forming the sixteen rounds of the DES algorithm (see Figure 3A). There are also initial and final
permutations which occur before and after the sixteen rounds. These initial and final
permutations exist for historical reasons dealing with implementation on hardware and do not
improve the security of the algorithm. For this reason they are sometimes left out of
implementations of DES. They are, however, included in this analysis as they are part of the
technical definition of DES.

SPRA702

7 Data Encryption Standard (DES) Implementation on the TMS320C6000

As is evident from the description above, DES is not a typical digital signal processing (DSP)
application. DSP applications tend to rely upon the sum of products as their core operation. DES
relies primarily on bit manipulation operations and actually uses no multiplication operations.
None the less, as will be evinced later in this application report, the C6000 platform is able to
perform the DES algorithm with high efficiency.

It is possible to go into much greater detail on the inner workings of the DES algorithm, as is
done in the following references: [1],[2],[3],[4]. The purpose of this application report is to
investigate the performance of DES on the C6000 platform using C code which is compiled by
Texas Instruments’ Optimizing C Compiler. Thus, we only go into the level of detail that is need
as background to the investigations presented later in this application report.

2 Methods

This application report investigates the performance of the DES algorithm on the C6000 Digital
Signal Processing platform using C code compiled on the Texas Instruments’ Optimizing C
Compiler. DES C code was obtained from the public domain in a library compiled by Eric Young
[6]. This code was optimized in C (no assembly code is used), using feedback from the
Optimizing C Compiler. Reference [7], the TMS320C6000 Compiler Optimization Tutorial,
outlines the use of the Optimizing C Compiler and how the feedback from the compiler is used to
improve performance of C code.

The following are the version numbers and part numbers of each of the tools used to generate
the results of this application report:

Code Composer Studio, version 1.0 – TMDX3246856-07

Compiler tools, version 3.01 – TMDS3246555-07

C62xx fast simulator, little endian – Included with CCS, v. 1.0 (TMDX3246856-07)

C6211 DSP Starter Kit (DSK) – TMDX320006211

C6201 Evaluation Module (EVM) – TMDS3260A6201

2.1 Configuration

This code is derived from an encryption library created by Eric Young. The files have been
modified, primarily for readability. The files have also been modified to improve performance,
using feedback from the Optimizing C Compiler, as is outlined in the sections to follow.

SPRA702

8 Data Encryption Standard (DES) Implementation on the TMS320C6000

All code was compiled using the following compiler flags:

• –o3
• –pm
• –oi0
• –mx
• –k
• –mw

Table 2. Explanation of Compiler Options Used

Compiler Flag Description

–o3 Represents the highest level of optimization available. Various loop optimizations are performed
such as software pipelining, unrolling, SIMD.

–pm Combines source files to perform program-level optimization.

–oi0 Disables all automatic size-controlling inlining (which is enabled by –o3).

–mx Tries multiple software pipeline heuristics and chooses the best one.

–k Instructs the compiler to keep the assembly file, and to allow analysis of the compiler feedback
(see –mw).

–mw Produces compiler feedback.

These are the compiler flags recommended by the C6000 Compiler Optimization Tutorial [7] with
one exception. The “C6000 Compiler Optimization Tutorial” recommends the use of the compiler
flag –op2. This flag specifies that the module contains no functions or variables that are called or
modified from outside the source code provided to the compiler. In this example, the source
code was separated into multiple files for compilation speed and ease of use. For this reason,
there were global variables which were modified between files, so the –op2 option was not
appropriate.

The compiled functions were benchmarked using statistics objects from DSP/BIOS package
which is a part of Code Composer Studio. These results were confirmed both by using profile
points, a second option available in Code Composer Studio, and using the clock functions
included in the <time.h> library. All three methods produced nearly identical results. It should be
noted that the <time.h> library is an older development and not meant for use with Code
Composer Studio. If this library is used to benchmark functions, the program should be run from
a DOS environment. For more explanation of Statistics Object, Profile Points, and the Code
Composer Studio Integrated Development Environment, please refer to the Code Composer
Studio User’s Guide [11] and the TMS320C6000 DSP/BIOS User’s Guide [12].

2.2 Core Algorithm Optimization Methods

The C code which was obtained from the public domain produces the following output from the
optimizing C compiler when compiled using the above outlined procedure. The C code which
generated this output is given in the zip file, DES.zip. The name of the subroutine is
“des_encrypt_core(…).”

Figure 4 shows the feedback from the optimizing C compiler on the des_encrypt_core() function.
The trip count is the number of times the loop will execute. In this case, DES has exactly 16
rounds in every instance (it is part of the definition of DES) and therefore, both the Known
Minimum Trip Count and the Know Maximum Trip Count are 16.

SPRA702

9 Data Encryption Standard (DES) Implementation on the TMS320C6000

The Loop Carried Dependency bound represents the largest loop carry path. A loop carry path
occurs when one iteration of the loop writes a value that must be read in a future iteration. In the
DES core algorithm, the 64-bit block is separated into two 32-bit variables, denoted in the C
code as “l” and “r,” for “left” and “right” variables, respectively. Both variables, “l” and “r,” are
modified in each iteration of the loop, thus, all operations upon them from one iteration of the
loop must be completed before the next iteration of the loop may begin. The “r” variable has a
longer loop carry path and therefore determines the Loop Carried Dependency bound of 15, as
shown in Figure 5. The instructions in the bubbles of Figure 5 map directly to the corresponding
instruction of the original C code, as given in the zip file, DES.zip. The name of the subroutine is
“des_encrypt_core(…).”

The Loop Carried Dependency bound of 15 severely limits the performance of this system. As
we see from the output above, the partitioned resource bound is only 7. The unpartitioned
resource bound and partitioned resource bounds indicate the minimum number of cycles per
loop required based solely upon the resources available on chip. The unpartitioned resource
bound is measured before the variables are partitioned between the two banks of 16 registers
and the operations are correspondingly partitioned between the two banks of .L, .S, .D and .M
units. The partitioned resource bound of 7 indicates that the C6000 has the resources to do the
36 assembly instructions of this loop in 7 cycles.

This means that if the Loop Carried Dependency did not exist, the compiler might be able to find
a schedule of as few as 7 cycles per loop iteration. Because the Loop Carried Dependency
bound does exist, however, the compiler is forced to start looking for schedules of 15 cycles per
loop iteration and actually finds the schedule for 16 cycles per loop iteration.

Figure 4. Compiler Feedback for DES Core Algorithm, 1 Channel

SPRA702

10 Data Encryption Standard (DES) Implementation on the TMS320C6000

The remaining section of the compiler feedback gives a detailed analysis of the partitioning of
the .L, .S, .D and .M functional units in the C6000 core. This is also very important feedback, but
as shown in the paragraph above, is overshadowed in this case by the loop carry path. Thus,
the loop carry path obstacle will be solved first, and then this next section of compiler feedback
will be discussed.

The loop carry path is a property of the DES algorithm and cannot be modified; however, with
the provision of this information from the optimizing compiler, it is possible to modify the code in
order to remove the adverse effect of the loop carry path. The loop carry path is lowering
performance because it limits the number of operations that can be done each cycle. Because
the C6000 core is capable of doing 8 operations per cycle, the DES algorithm, in its current
form, does not take advantage of all of the C6000 core’s computational resources.

In order to take advantage of the C6000 core’s computational resources, the code is modified to
encrypt three 64-bit blocks in parallel. The modified code is provided in the zip file, DES.zip. The
name of the subroutine is “des_encrypt_core_3ch(…).” The loop carry path for each block is still
15 cycles, however, because each block is encrypted independently, these loop carry paths are
independent, and the total loop carry path for the three encryptions in parallel is still 15. So what
has doing three encryptions in parallel gained? Examination of the optimizing C compiler’s
output will elucidate (see Figure 6).

SPRA702

11 Data Encryption Standard (DES) Implementation on the TMS320C6000

t = r^s[i+1]

t = ROTATE(t,4)

t1 = EXTRACT(t, 24, 26)

lor3 = des_SPtrans[1][t1]

lor3 ^= des_SPtrans[3][t2];

lor3 ^= lor4

lor1 ^= lor3

temp = l ^ lor1

r = temp

XOR = 1 cycle

ROTATE = 2 || shifts + add = 2 cycles

Extract = 1 cycle

1 cycle before next load

(Array Load = 5 cycles)

XOR = 1 cycle

Array Load = 5 cycles

XOR = 1 cycle

XOR = 1 cycle

XOR = 1 cycle

Move = 1 cycle

Figure 5. Loop Carry Path for DES Core Algorithm

SPRA702

12 Data Encryption Standard (DES) Implementation on the TMS320C6000

Figure 6. Compiler Feedback for DES Core Algorithm, 3 Channel

As before, the known minimum and maximum trip counts are 16, and the known max trip count
factor is 16. Also, the loop carried dependency bound remains unchanged at 15 cycles.
However, because three 64-bit blocks of data are being encrypted instead of just one, the
unpartitioned resource bound has correspondingly tripled from 6 to 17. This is reflective of the
fact that there are now almost three times as many instructions that must be issued per loop, so
the loop now requires three times the on-chip resources. (The reason the resource requirement
has not exactly tripled is because the loop overhead, i.e. loop counter incrementing and the
branch to the beginning of the loop, has not increased.)

Now the loop carried dependency bound is no longer limiting the efficiency of this loop.
Correspondingly, the loop is now performing 3 64-bit encryption operations in 21 cycles per loop
iteration (7 cycles per loop iteration per block) instead of 1 64-bit encryption operation in 16
cycles per loop iteration (16 cycles per loop iteration per block). With one simple modification
performance is more than doubled.

SPRA702

13 Data Encryption Standard (DES) Implementation on the TMS320C6000

Examination of the detailed resource analysis shows that this loop contains 31 commands which
must be performed on the .S units; 30 commands which must be performed on the .D units; 39
commands which may be performed on either the .L units or the .S units; and 3 commands
which may be performed on the .L units, .S units or .D units. (The compiler also breaks out this
information between the A and B sides, but since the partitioning is even, this is not discussed
here.) From this information, the compiler calculates the (.L .S .LS) resource bound and the (.L
.S .D .LS .LSD) resource bounds. Both of these bounds are 18 on the A side and 17 on the B
side. This is the best case partitioning because the resources have been partitioned evenly.

Evident from the above figure, however, is that the .M units are not utilized. In fact, the .M units
are not used a single time in this loop. This is because the .M units are multipliers and do not
perform any operations other than multiplications. Because DES does not use any
multiplications, these units go unused.

Programmers who are using hand coded assembly might attempt to make use of the .M units in
order to perform the 9 move instructions and the 3 left shifts that occur in this loop. The .M units
are used to multiply by 1, the result is the equivalent of a two cycle move. Likewise, if the .M
units are used to multiply by 2, 4, 8, etc., the equivalent of two-cycle left shifts of 1, 2, 3, etc.
result.

However, using this approach will increase the loop carried dependency bound because the
multiplication operations of the .M units require two cycles apiece, whereas normally instituted
move and shift operations require only one. Six of the moves contribute to the loop carried
dependency bound as do all three of the shifts. It may be possible, however, to utilize the .M
units to perform the three moves which do not contribute to the loop carried dependency bound
as well as three of the remaining nine operations. This would increase the loop carried
dependency bound from 15 to 16, and would decrease the unpartitioned resource bound from
17 to 16. Thus, it is theoretically possible (though highly unlikely) that a hand coded assembly
approach could reduce the iteration interval from 21 to 16 cycles.

Thus, using the iteration interval from the optimizing C compiler feedback (ii = 21 schedule
found), it is determined that the C code for this loop is compiled to greater than 76% of the
theoretical performance limit compared to the 16 cycle theoretical minimum. In actuality it is
likely that even hand coded assembly could not achieve 16 cycles per loop iteration as
partitioning and scheduling issues are likely to arise. The optimizing C compiler is most probably
operating at much better than 76% of the hand coded assembly efficiency, likely at 86% or 90%
efficiency.

2.3 Operational Modes Optimization Methods

The core DES routine has now been optimized. Each DES mode spends between 75% and 98%
of its cycles in the core algorithm, depending on which mode and whether DES or 3DES is used.
There are no other major subroutines which require focused attention.

In implementing the ECB and CBC modes for DES and 3DES, calling routines are developed
which use the core DES algorithm to process each 64 bit block and provide any necessary
feedback between the blocks. In the case of the Electronic Code Book mode, there is no
feedback between individual 64-bit blocks. The ECB mode routine is basically an outer loop
which calls the core DES algorithm to process each block. In the case of triple-DES ECB, the
core DES algorithm is called 3 times for each block, once to encrypt using key #1, again to
decrypt using key #2 and finally to encrypt using key #3.

SPRA702

14 Data Encryption Standard (DES) Implementation on the TMS320C6000

As was studied in the previous section, the most highly optimized core DES algorithm processes
three 64-bit blocks in parallel. In the case of DES and triple-DES in the ECB mode, the ECB
mode routines simply process blocks 1–3 in parallel and then, for the next iteration process
blocks 4–6 in parallel, and continue to process 192 bits (3 64-bit blocks) at a time. In the cases
of CBC mode, however, the necessary feedback between each 64-bit block precludes parallel
processing of blocks 1–3 of a single channel in parallel.

As is evident from Figure 2(B), the input to each 64-bit encryption block is dependent not only on
the input data stream, but upon the output of the previous 64-bit encryption block. This
necessarily precludes the ability to process three blocks at the same time. Thus, for CBC mode,
a single channel implementation may only use the core DES algorithm which processes a single
64-bit block at a time. It is possible, however, to implement CBC such that three independent
channels are processed in parallel. When this is done, blocks #1 of each independent channel
may be processed in parallel, using the 3-channel DES core algorithm. Next, blocks #2 of each
independent channel may be processed in parallel, using the output of the first block of each
independent channel.

Though the need to process three independent channels in parallel in order to achieve
maximum performance in the CBC mode may seem like a constraint, it is easily worked around.
Firstly, many systems which will be implemented on the C6000 will be multi-channel systems
anyway. Secondly, even if only one channel is desired, a single input stream may be broken into
three independent channels by using a Time Division Multiplexed (TDM) strategy. A single
stream is “de-serialized” into three independent streams by placing blocks #1, #4, #7, etc. into
the first independent stream; placing blocks #2, #5, #8,etc. into the second independent stream;
and placing blocks #3, #6, #9, etc. into the third independent stream. These three independent
streams may be encrypted, sent, and decrypted, then re-serialized into the desired
single-channel output stream on the other side. This method does not disrupt security, in fact, an
attacker must now break three times as many keys from 1/3 the data per channel which
heightens security. The only drawback is the need for the generation and communication of
three times as many keys. This is a minor concern considering the boost in efficiency which this
method provides.

Output Feedback and Cipher Feedback modes were not investigated in this study. Because they
have a feedback structure similar to CBC mode, it is expected that the results of their
implementations would be similar to that of CBC mode.

2.4 Memory Structure Optimization Methods

To this point, development of the DES code has been accomplished using an infinite memory
model. In this model, there is an infinite amount of on chip memory, and there are no access
penalties to be concerned with such as bank hits or cache misses. Bank hits occur when the
same bank of memory is accessed twice in the same cycle. Cache misses occur in a
cache-based system when the desired memory location is not represented in the cache layer.

SPRA702

15 Data Encryption Standard (DES) Implementation on the TMS320C6000

The C620x devices have an interleaved memory structure. Memory is separated into four
separate banks. Each bank may be accessed only once per cycle. These banks are interleaved
such that words #1, #5, #9, etc. are in bank one; words #2, #6, #10, etc. are in bank two; words
#3, #7, #11, etc. are in bank three; and words #4, #8, #12,etc. are in bank four. This interleaved
structure facilitates vector operations. For instance, in a dot product, if the two input vectors are
aligned on different bank boundaries, they will never have a bank hit, because the first elements
of each vector will be on different banks, as will the second element of each vector, etc. There is
no method for effectively utilizing this interleaved structure, however, when memory is accessed
at random locations, as is the case with look-up tables.

The DES core algorithm utilizes a look-up table in order to perform S-box substitutions and
P-box permutations. Though the index of these look-ups is deterministically dependent upon
both the input block and the encryption key, it cannot be predicted without knowing these
variables in advance. Thus, when two of these look-ups are performed, it is not possible to take
advantage of the interleaved memory structure to ensure that there is not a bank hit.

This is why the memory structure of many C620x devices provides a second means of reducing
bank hits. In addition to being partitioned into four interleaved banks, the internal memory of
these devices is separated into two blocks (each of which is interleaved into banks). Any
location within block #1 may be accessed in the same cycle as any location within block #2. The
bank hits caused by the random access of the S- and P-box look-up table is avoided by making
two copies of this table; the first copy is placed in memory bank #1, and the second is placed in
memory bank #2. If this table must be accessed twice in the same cycle, the first access is
made from the first table and the second access is made from the second table.

The C6211 does not have an interleaved memory structure. Instead, the internal memory of the
C6211 is organized into a two-level cache. The first level of the cache is separated into program
and data caches, L1P and L1D, respectively. Both L1P and L1D are 4 Kbytes in size. The
second cache level, L2, may contain both program and data. The L2 is 64 Kbytes wide, though it
is configurable by fourths as either internal SRAM or L2 cache. This internal memory may either
be 64 Kbytes cache, 48 Kbytes cache and 16 Kbytes SRAM, 32 Kbytes of cache and 32 Kbytes
of SRAM, 16 Kbytes of cache and 48 Kbytes of SRAM, or 64 Kbytes of SRAM. In this study, the
entire library of DES functions is about 20 Kbytes in size, so the L2 was configured as 64 Kbytes
SRAM (0 Kbytes Cache.)

In order to better understand the cache optimizations, it is necessary to first examine the
structure of the subroutines. Each DES mode has a Mode subroutine, a Block subroutine, and a
Core subroutine. There are two core subroutines; one processes three channels in parallel, and
the other processes a single channel. The core routine performs sixteen iterations of the DES
inner loop. These Core routines are called by four Block subroutines; the four Block routines
perform DES or triple-DES for either one or three channels. The block routines perform the initial
and final permutations and call the DES core routine either once or three times depending on
whether DES or triple-DES is used. There are six Mode routines; the Mode routines perform
ECB, CBC or 3 channel CBC modes, each for either DES or triple-DES. The mode routines
perform the outer loop which call the Block routines to encrypt each 64-bit block and then
perform the necessary feedback (if any) between blocks.

SPRA702

16 Data Encryption Standard (DES) Implementation on the TMS320C6000

Caching relies upon the fact that in many algorithms, the same instructions and data are used
over and over again within a single loop structure. The cache of the C6211 also relies upon
spatial proximity of program instructions and data values. Spatial proximity is particularly
important for program memory because the L1P cache uses the least significant 12 bits of the
address in order to hash from the L2 to the L1P, and this cache is one-way. Thus, contiguous
memory locations will not thrash. However, memory locations whose addresses are separated
by more than 4 Kbytes will thrash if their memory values MOD 4096 are the same. Spatial
proximity is also important because when either data or program cache misses occur, the cache
not only fetches the missed word, but pre-fetches other contiguous memory locations. More
detail is available on the two level cache from reference [9], the TMS320C6000 Peripherals
Reference Guide.

In order to maximize the efficiency of the two level cache of the C6211, it is important that the
Block subroutines are placed contiguously in memory with the Core subroutines which they call.
This ensures that the block subroutines do not thrash with the Core subroutines. This was
accomplished by defining sections in the linker command file (named “block1” and “block2”) and
placing each Block and Core routine triplet (ordered Block, Core, Block) into each memory
block. This ensures that the proper Block and Core routines are contiguous in memory. Caching
efficiency is highly dependent upon the situation, but in general this method improved the
efficiency of the C6211 cache from approximately 66% efficiency to 90% efficiency and above.

3 Results

The following cycle counts were measured for the DES core algorithm and the 3 channel DES
core algorithm. Also, the one- and three-channel block algorithms for DES and triple-DES were
measured. All measurements done on the C6211 DSK used Statistics Objects from DSP/BIOS.
Cycle counts are averaged from no fewer than 300 measurements. All measurements done on
the C6201 EVM used probe points from Code Composer Studio. The cycle counts are
presented below. Also included are the memory requirements of each algorithm. The S- and
P-Box lookup table is required by both core algorithms but only needs be present once if both
algorithms are used. Also, if the dual block optimization is used on the C6201, a copy of this
table is made and put into the second block of memory, so it must be accounted for twice.

3.1 TMS320C6211 DSP Starter Kit

Table 3. Memory Required for DES Core Algorithms

DES Algorithm Cycle Count, C6211 Memory Required

DES core algorithm 304 416 Bytes

DES core algorithm, 3 channel 522 2080 Bytes

DES block algorithm 380 480 Bytes

DES block algorithm, 3 channel 806 1760 Bytes

Triple-DES block algorithm 1056 576 Bytes

Triple-DES block algorithm, 3 channel 1713 1984 Bytes

S- and P-Box Lookup Table n/a 2048 Bytes

SPRA702

17 Data Encryption Standard (DES) Implementation on the TMS320C6000

The following cycle counts were measured for DES and triple-DES encryption operating in the
CBC and ECB modes. Also, data rates were measured for CBC mode with three independent
channels in parallel. All results are averaged from no fewer than 300 measurements. The cycle
counts are presented below.

Table 4. DES Mode Cycle Counts, Measured on TMS320C6211

DES Mode Key Scheduler Encrypt Decrypt

Triple-DES, CBC 1448 133,611 129,680

Triple-DES, CBC 3ch 1444 209,544 220,499

Triple-DES, ECB 1445 68,884 68,770

DES, CBC 1425 52,540 51,576

DES, CBC 3ch 1440 96,068 105,836

DES, ECB 1447 31,644 31,722

Cycle counts for Table 4 are measured for the encryption and decryption of 1024 Bytes of data
for each mode. (Three channel CBC encrypts 1024 bytes per channel.) Data was measured on
the C6211 DSK using Statistics Objects from DSP/BIOS. Results are reported after having
subtracted the 86 cycle calculated overhead of STS_set and STS_delta. Cycle counts are
averaged from no fewer than 300 iterations.

Table 5. DES Mode Data Rates, Calculated for TMS320C6211

DES Mode Memory Required Encrypt Decrypt

Triple-DES, CBC 992 bytes (4032 bytes) 9.2 Mbps 9.4 Mbps

Triple-DES, CBC 3ch 2560 bytes (8672 bytes) 17.6 Mbps 16.7 Mbps

Triple-DES, ECB 1024 bytes (7136 bytes) 17.8 Mbps 17.8 Mbps

DES, CBC 640 bytes (3584 bytes) 23.4 Mbps 23.84 Mbps

DES, CBC 3ch 1408 bytes (7296 bytes) 38.4 Mbps 34.8 Mbps

DES, ECB 640 bytes (6528 bytes) 38.8 Mbps 38.7 Mbps

Table 5 shows the equivalent data rates for each mode on the C6211 DSK (150 MHz) measured
in millions of bits per second. Data rates are calculated directly from cycle counts of Table 4
using Data Rate = 150 MHz/(# cycles/8192 bits). Memory required is given is for the mode
algorithm only; the number in parenthesis includes needed block and core algorithms. If multiple
modes are used, the S- and P-Box look-up table, block algorithms and core algorithms need
only have one copy present, significantly reducing the memory requirement.

SPRA702

18 Data Encryption Standard (DES) Implementation on the TMS320C6000

3.2 TMS320C6201 Evaluation Module

Table 6. DES Mode Cycle Counts, Measured onTMS320C6201

DES Mode Key Scheduler Encrypt Decrypt

Triple-DES, CBC 760 136,666 136,762

Triple-DES, CBC 3ch 760 210,369 211,822

Triple-DES, ECB 760 73,589 71,268

DES, CBC 760 52,687 53,466

DES, CBC 3ch 760 93,828 100,301

DES, ECB 760 31,266 30,958

Cycle counts for Table 6 are measured for the encryption and decryption of 1024 Bytes of data
for each mode. (Three channel CBC encrypts 1024 bytes per channel.) Data was measured on
the C6201 Multi-Channel Evaluation Module (McEVM) using Profile Points from Code Composer
Studio. Cycle counts are averaged from no fewer than 300 iterations.

Table 7. DES Mode Data Rates, Calculated for TMS320C6201

DES Mode Memory Required Encrypt Decrypt

Triple-DES, CBC 992 bytes (4032 bytes) 12.0 Mbps 12.0 Mbps

Triple-DES, CBC 3ch 2560 bytes (8672 bytes) 23.4 Mbps 23.2 Mbps

Triple-DES, ECB 1024 bytes (7136 bytes) 22.3 Mbps 23.0 Mbps

DES, CBC 640 bytes (3584 bytes) 31.1 Mbps 30.6 Mbps

DES, CBC 3ch 1408 bytes (7296 bytes) 52.4 Mbps 49.0 Mbps

DES, ECB 640 bytes (6528 bytes) 52.4 Mbps 52.9 Mbps

Table 7 shows the equivalent data rates for each DES mode on the C6201 McEVM (200 MHz)
measured in millions of bits per second. Data rates are calculated directly from cycle counts of
Table 6 using Data Rate = 200 MHz/(# cycles/8192 bits). Data rates for other C620x processors
should scale by MHz. Memory required is given is for the mode algorithm only; the number in
parenthesis includes needed block and core algorithms. If multiple modes are used, the S- and
P-Box look-up table, block algorithms and core algorithms need only have one copy present,
significantly reducing the memory requirement.

As is evident from the above charts, cycle counts for each mode are very similar between the
C6201 and the C6211 devices. The key scheduler does have very different cycle counts on the
two platforms. The key scheduler is run only one time in a row each time that it is run. Thus, the
key scheduler does not run very efficiently on the cache-based architecture of the C6211. On the
C6201, however, no cache penalty is paid. This should not be a factor in the choice of platform,
however, as the key scheduler is a relatively small contributor to overall processor loading.

SPRA702

19 Data Encryption Standard (DES) Implementation on the TMS320C6000

3.3 Comparison to Infinite Memory Model

The following chart gives a comparison of the cycle counts on the C6211 and C6201 versus the
C62xx fast simulator, little endian. This simulator does not take into account cycle delays due to
bank hits or cache misses. Thus it is a useful metric against which to measure the efficiency of
the C6201 and C6211 memory structures.

Table 8. Memory Efficiency for the TMS320C6201 and TMS320C6211

DES Mode
C62xx Fast Simulator

Little Endian Cycle Count
C6201 Percent

Efficiency
C6211 Percent

Efficiency

Triple-DES, CBC ENCRYPT 123,971 91% 93%

Triple-DES, CBC DECRYPT 124,422 91% 96%

Triple-DES, CBC 3ch ENCRYPT 195,013 93% 93%

Triple-DES, CBC 3ch DECRYPT 195,103 92% 89%

Triple-DES, ECB ENCRYPT 64,502 88% 94%

Triple-DES, ECB DECRYPT 62,180 87% 91%

DES, CBC ENCRYPT 48,529 92% 92%

DES, CBC DECRYPT 49,342 92% 96%

DES, CBC 3ch ENCRYPT 83,485 89% 87%

DES, CBC 3ch DECRYPT 90,788 90% 86%

DES, ECB ENCRYPT 27,625 88% 87%

DES, ECB DECRYPT 27,664 89% 87%

4 Conclusion

Using only C code (no assembly code) and the feedback from the optimizing C compiler, DES is
implemented at data rates as high as 52.4 Mbits per second for DES and 22.3 Mbits per second
for triple-DES on the C6201 McEVM (200 MHz). Using the C6211 DSK (150 MHz), data rates
were measured as high as 38.8 Mbits per second for DES and 17.8 Mbits per second for
triple-DES.

The performance of the C coded core algorithm was shown to be 76% of the theoretical
maximum performance. It is likely that hand coded cannot achieve this theoretical maximum
performance and that the C coded version of the core algorithm is greater than 76% efficient
when compared to hand coded assembly.

The efficiency of the dual block, 4 way interleaved bank memory of the C6201b was shown to be
between 87–93% efficient on the Multi-channel Evaluation Module compared to the infinite
memory model. The two level cache of the C6211 was shown to be between 86–96% efficient
on the DSP Starter Kit compared to the infinite memory model.

SPRA702

20 Data Encryption Standard (DES) Implementation on the TMS320C6000

Overall the C6000 platform boasts fantastic performance for DES using C code. Because most
encryption algorithms are in the public domain and available as C code for free with no licensing
restrictions, C programming is a quick and inexpensive way to add encryption functionality to a
design. Because this is a software approach, this methodology is not only easily extensible to
quickly building an entire library of encryption standards, but provides the flexibility to evolve
designs from DES to any algorithm which may replace it as the mainstream encryption algorithm
in the future.

To begin development of your own system on the TMS320C6000 platform, contact your local
Texas Instruments sales representative or one of the Product Information Centers listed on the
last page of this document. The Texas Instruments website, listed on the same page, is another
resource to find out more information about the C6000 DSP Starter Kit, Evaluation Modules,
Code Composer Studio, and the variety of other tools available to assist in product development.

5 References

Refer to the following documents to learn more about DES and the TMS320C6000.

1. National Bureau of Standards, NBS FIPS PUB 81, “Guidelines for Implementing and Using the
NBS Data Encryption Standard,” U.S. Department of Commerce

2. ANSI X3.92, “American National Standard for Data Encryption Algorithm (DEA),” American
National Standards Institute, 1981.

3. ANSI3.106, “American National Standard for Information Systems—Data Encryption
Algorithm—Modes of Operation,” American National Standards Institute, 1983.

4. “Applied Cryptography, Second Edition,” Bruce Schneider, John Wiley & Sons, Inc., New York,
NY, 1996.

5. “Chip, algorithm bridge security gap,” Walter Boyles, Electronic Engineering Times, p.94,
November 8, 1999.

6. Eric Young, Cryptsoft, eay@cryptsoft.com

7. TMS320C6000 Compiler Optimization Tutorial, Literature Number SPRH046, Texas
Instruments.

8. TMS320C6000 Optimizing C Compiler User’s Guide, Literature Number SPRU187E, Texas
Instruments.

9. TMS320C6000 Peripherals Reference Guide, Literature Number SPRU190C, Texas
Instruments, Tarrant Dallas Printing, Dallas, Texas, 1999

10. TMS320C62x/C67x CPU and Instruction Set Reference Guide, Literature Number SPRU189C,
Texas Instruments, Tarrant Dallas Printing, Dallas, Texas, 1998

11. Code Composer Studio User’s Guide, Literature Number SPRU328A, Texas Instruments,
Tarrant Dallas Printing, Dallas Texas, 1999

12. TMS320C6000 DSP/BIOS User’s Guide, Literature Number SPRU303, Texas Instruments,
Tarrant Dallas Printing, Inc., Dallas, Texas, 1999

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 2000, Texas Instruments Incorporated

