§3 Programmable Logic Devices

3.0 Introduction

- Low cost, low risk way of implementing digital circuits as application specific Ics (ASICs).
- Technology of choice for low to medium volume products (say hundreds to few 10's of thousands per year).
- Good and low cost design software.
- Latest high density devices are over 1 million gates!

3.1 Technologies for Programmable Logic Devices

Current PLDs are based on three different technologies: antifuse, static RAM, EPROM/EEPROM.

3.1.1 Antifuse (See figure 3.1)

Invented at Stanford and developed by Actel. Currently mainly used for military applications. See www.actel.com.

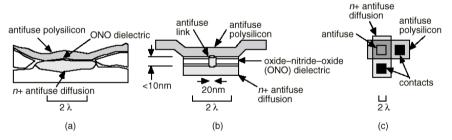
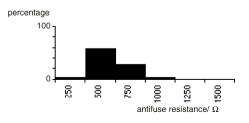
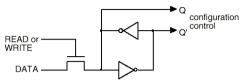



Figure 3.1 Actel antifuse

Number of antifuses on Actel FPGAs


Device	Antifuses
A1010	112,000
A1020	186,000
A1225	250,000
A1240	400,000
A1280	750,000

The resistance of blown Actel antifuses

3.1.2 Static RAM

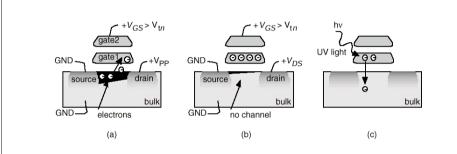
DIGITAL SYSTEM DESIGN

3.2

Figure 3.2 1-bit of static RAM

- Almost all Field Programmable Gate Arrays (FPGAs) are based on static RAMs. (Figure 3.2)
- Static RAM cells are used for three purposes:
 - 1. As lookup tables (LUTs) for implementing logic (as truth-table).
 - 2. As embedded block RAM blocks (for buffer storage etc.).
 - 3. As control to routing and configuration switches.

Advantages:


- Easily changeable (even dynamic reconfiguration)
- Good density
- Track latest SRAM technology (moving even faster than technology for logic)
- Flexible no only good for FSM, also good for arithmetic circuits

Disadvantages:

- Volatile
- · Generally high power

3.1.3 EPROM & EEPROM (Figure 3.3)

- · Generally used in product-term type of PLDs.
- Non-volatile and reprogrammable.
- · Good for FSM, less good for arithmetics.

An FPROM transistor

- (a) With a high (>12V) programming voltage, V_{PP} , applied to the drain, electrons gain enough energy to "jump" onto the floating gate (gate1)
- **(b)** Electrons stuck on gate1 raise the threshold voltage so that the transistor is always off for normal operating voltages
- **(c)** UV light provides enough energy for the electrons stuck on gate1 to "jump" back to the bulk, allowing the transistor to operate normally

Facts and keywords: Altera MAX 5000 EPLDs and Xilinx EPLDs both use UV-erasable electrically programmable read-only memory (EPROM) • hot-electron injection or avalanche injection • floating-gate avalanche MOS (FAMOS)

Figure 3.3 EPROM/EEPROM technologies for CPLDs

DIGITAL SYSTEM DESIGN 3.4

3.2 FPGA Architectures

All FPGAs have the following key elements:

- The Programming technology
- The basic logic cells
- The I/O logic cells
- Programmable interconnect
- · Software to design and program the FPGA

Currently the three main player in this field are:-

- Actel
- Altera
- Xilinx

3.3 Actel FPGA's Architecture

- Uses antifuse technology
- Based on channelled gate array architecture as shown in Figure 3.4.
- Each logic element (labelled 'L') is a combination of multiplexers which can be configured as a multi-input gate as shown in Figure 3.5).

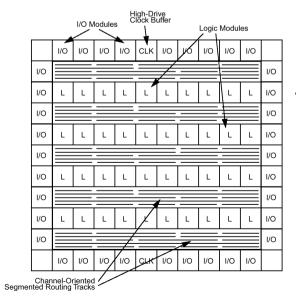


Figure 3.4 Channelled gate array architecture

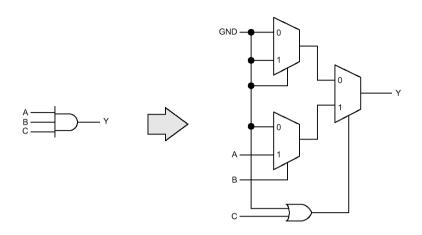


Figure 3.5 Actel basic logic element configured as a 3-input AND gate

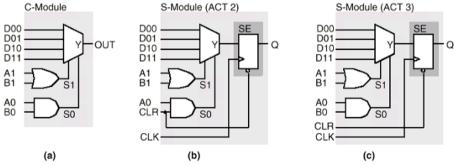


Figure 3.6 Actel combinational (C-module) and sequential (S-module) cells

- Combinational modules can also be used to form a latch.
- Using two latches in series (master-slave), a flip-flop can be built using two C-modules.
- Two C-modules is much bigger than a dedicated flip-flop.
- Actel introduced S-modules (sequential) which basically add a flip-flop to the MUX based C-module.
- ACT2 and ACT3 families have a mixture of C and S modules.

DIGITAL SYSTEM DESIGN 3.6

Capability	ACT 1	ACT 2/1200XL	3200DX	ACT 3
Core Module	Simple Logic Module	Combinatorial and Sequential Modules	Combinatorial and Sequential Modules	Combinatorial and Enhanced Sequential Modules
			Wide Decode Modules	
			Embedded Dual-Port SRAM	
Interconnect	Channeled	Channeled	Channeled	Channeled
Clocking Resources	Routed Clock (1)	Routed Clocks (2)	Routed Clocks (2)	Routed Clocks (2)
			Quad Clocks (4)	Dedicated Array Clock
				Dedicated I/O Clock
I/O Module	Simple I/O Module	Latched I/O Module	Latched I/O Module	Registered I/O Module

Figure 3.6 Summary of Key Actel FPGA Architectures

3.8

3.4 Altera MAX family of CPLDs

- CPLD = Complex Programmable Logic Devices
- FPGA = Field Programming Gate Arrays
- · Altera has three different PLD families:
 - 1. MAX family product-term based macrocells
 - 2. FLEX family SRAM based lookup tables (LUTs)
 - 3. APEX family mixture of product-term and LUT based devices

3.4.1 MAX 7000 Family

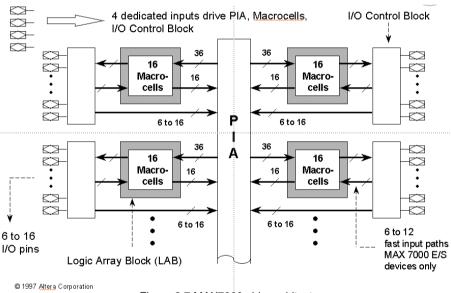


Figure 3.7 MAX7000 chip architecture

- Basic logic element is a macrocell which can implement a Boolean expression in the form of sum-of-product (SOP).
- An example of such a sum-of-product is: a•!b•c•!d + a•c•e + !a•f
- Each product term could have many input variables ANDed together. A SOP could have a number of product terms Ored together.
- Each macrocell also contains a flip-flop essential for implementing FSM.
- 16 macrocells are grouped together to form a Logic Array Block (LAB).
- In the centre is a Programmable Interconnect Array (PIA) which allows interconnection between different part of the chip.

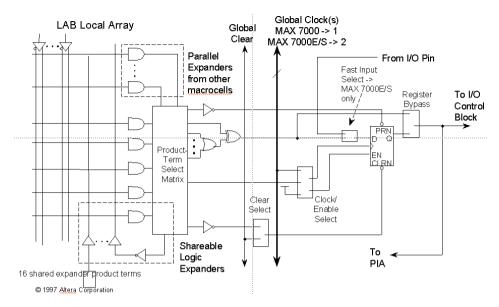


Figure 3.8 Internal structure of a MAX 7000 Macrocell

- Each horizontal line represent a product term.
- Inputs are presented to the product term as signal and its inverse.
- Each macrocell can normal OR 4 product terms together.
- Each LAB share an additional 16 shared product terms in order to cope with more complex Boolean equations.
- Output XOR gate allows either efficient implementation of XOR function or programmable logic inversion.
- The SOP output can drive the output directly or can be passed through a register.
- This architecture is particularly good for implementing finite state machine.
- Each register can store one state variable. This can be fed back to the logic array via the Programmable Interconnect Array (PIA).
- This is not efficient for adder or multiplier circuits or as buffer storage (such as register file or FIFO buffers) – waste the potential of the logic array.

3.5 Altera FLEX 8K/10K Families of FPGAs

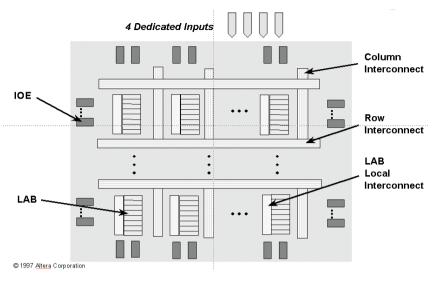
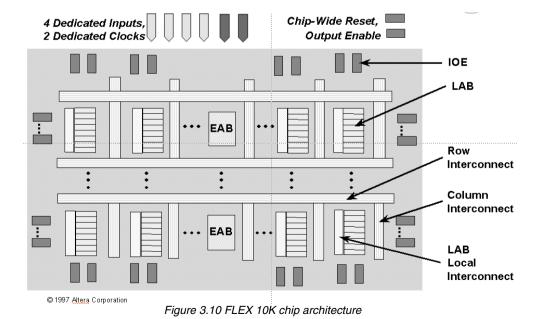



Figure 3.9 FLEX 8K chip architecture

- Organised as rows of logic cells (similar to ACTEL's gate arrays) with routing channels in between.
- Each row of logic contains many Logic Array Blocks (LAB).
- Each LAB contains 8 Logic Elements (LE).
- Each LAB has its own Local Interconnect.
- Chip-level wiring is done with row and column interconnections.
- Flex 8K family is obsolete.
- Flex 10K family has this basic structure + Embedded Array Block (EAB) in each row.
- An EAB is a block of 2K bit SRAM.

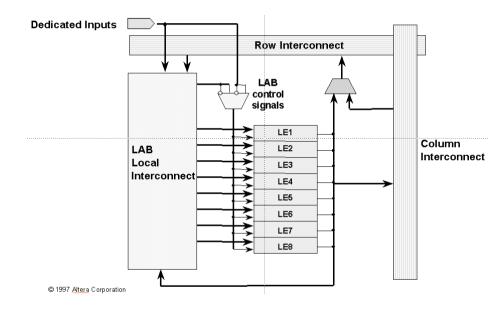


Figure 3.11 Inside a FLEX 10K Logic Array Block (LAB)

3.12

Each Logic Element (LE) contains the following:

- A 16-bit SRAM lookup table (LUT) this can implement an arbitrary 4-input logic function (as truth table).
- Circuitry that form fast carry chain and fast cascade chain (see later).
- A D-register that can be by-passed.
- · Various preset/reset logic for the register.

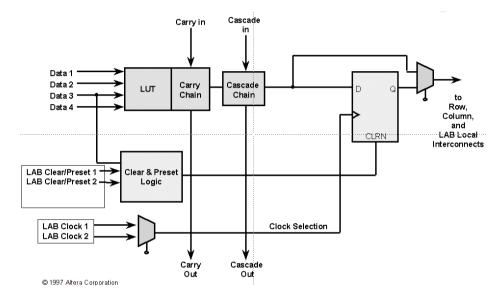


Figure 3.12 Internal architecture of a Logic Element (LE)

	EPF10K10 EPF10K10A	EPF10K20	EPF10K30 EPF10K30A	EPF10K40	EPF10K50 EPF10K50V EPF10K50A	EPF10K70	EPF10K100 EPF10K100A	EPF10K130V EPF10K130A	EPF10K250A
Typical Gates	10,000	20,000	30,000	40,000	50,000	70,000	100,000	130,000	250,000
Logic Elements	576	1,152	1,728	2,304	2,880	3,744	4,992	6,656	12,160
RAM Bits	6,144	12,288	12,288	16,384	20,480	18,432	24,576	32,768	40,960
Registers	720	1,344	1,968	2,576	3,184	4,096	5,392	7,120	12,624
Maximum User I/O Pins	134	189	246	189	310	358	406	470	470

Figure 3.12a The size of FLEX 10K devices

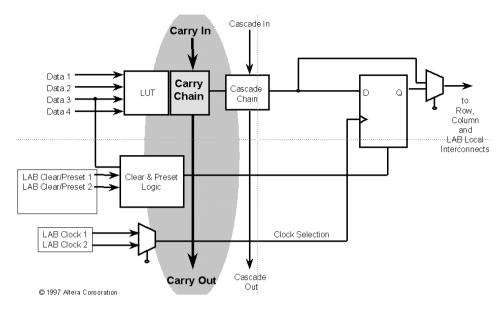


Figure 3.13 Carry Chain in FLEX 8K & FLEX 10K

- Starts in first LE (LE1) of every LAB
 - · Function's carry chain can begin in any LE of a LAB
- Runs downward through LEs of a LAB
- At end of LAB,
 - . FLEX 8000, continues to top of next LAB in same row
 - · FLEX 10K, continues to top of second-next LAB in same row
- Stops at end of row
- Stops at EAB (FLEX 10K)

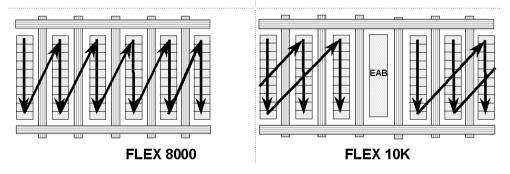


Figure 3.14 The propagation of the carry chain for FLEX8K and 10K

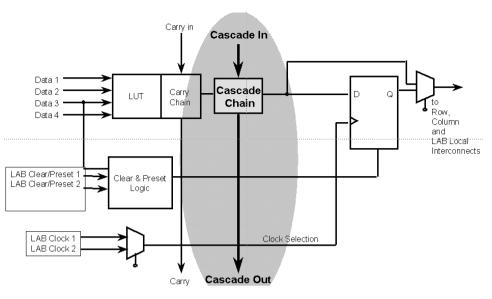


Figure 3.15 FLEX 8K/10K Cascade Chain

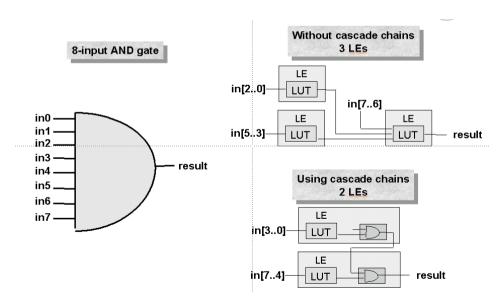
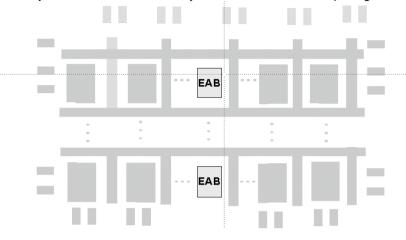



Figure 3.16 Cascade chain helps in reducing delay when cascading two or more LEs

DIGITAL SYSTEM DESIGN 3.14

3.5.1 Embedded Array Block in FLEX 10K

- An EAB is a large block, 2048 bits, of embedded RAM
- Synchronous and asynchronous operation supported
- Synchronous read and write cycle times of 9.5 ns for -3 speed grade

EABs cascaded to create wider RAM

- no speed penalty up to 2048 bits deep
- MAX+PLUS II configures RAM in the fastest way possible

EABs cascaded, muxed to create deeper RAM

- no speed penalty up to 2048 bits deep
- MAX+PLUS II configures RAM in the fastest way possible

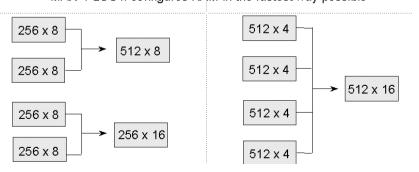


Figure 3.17 Three different configurations of EAB memory

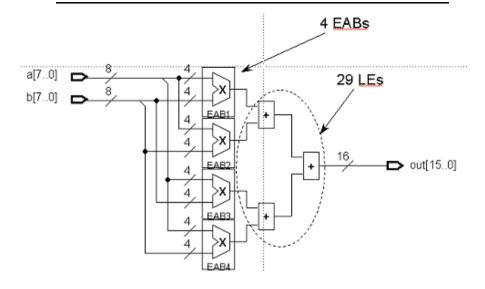


Figure 3.18 A 8 x 8 multiplier using 4 EABs

- A single 4 x 4 multiplier will fit into an EAB
- . Larger multipliers can be built from EABs and Les.
- You can find plenty of useful information and application notes on: www.altera.com

DIGITAL SYSTEM DESIGN 3.16

3.6 Altera APEX family of FPGAs

APEX 20K

Combine & Enhance Strengths of Prior Architectures for System-on-a-Chip Applications

© 1998 Altera Corporation

– Memory Core:

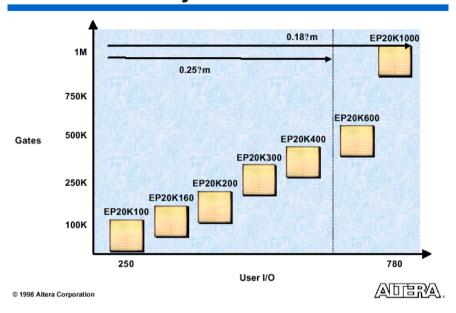
MultiCore[™] **Architecture**

- MultiCore Makes Million-Gate PLD Design Possible
- ✓ Facilitates Efficient IP Integration

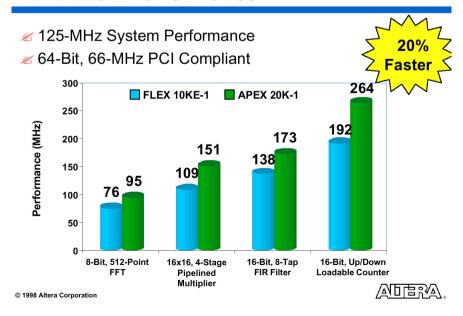
Look-up Table Core: FLEX 6000 ModelProduct-Term Core: MAX 7000 Model

FLEX 10KE Model

© 1998 Altera Corporation

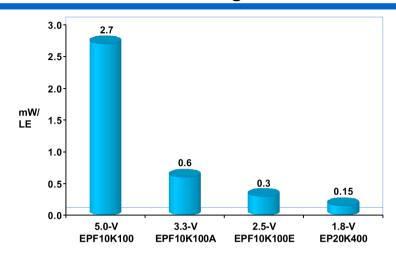

DIGITAL SYSTEM DESIGN 3.17 DIGITAL SYSTEM DESIGN 3.18

APEX 20K Features


- ∠ 0.25-μ/0.18-μ, 6LM
 SRAM Process
- - 4,160 to 42,240
 Logic Elements
 - 53,000 to 541,000
 Bits of RAM
 - 416 to 4,224 Macrocells
- - 2M Gate Density

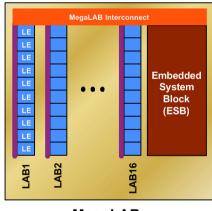
- ∠ 125-MHz System Performance
 - 64-Bit, 66-MHz PCI Compliant
- MultiCore[™] Embedded
 Architecture
 - Product Term with
 3.9-ns Performance
 - High-Speed Dual-Port RAM
 - Content Addressable Memory (CAM)
- ∠ 4-Level Continuous FastTrack Interconnect™
 - New Level of Routing Hierarchy
- - 1X, 2X, 4X
- ∠ Common I/O Standard Support
 - LVTTL, LVCMOS, SSTL3, GTL/GTL+, LVDS
- MultiVolt™ I/O Interface
- ∠ Advanced FineLine BGA™ Packaging

APEX 20K Family



APEX 20K Performance

pykc/2001 pykc/2001


APEX 20K Power Savings

Note: 25-MHz System Performance © 1998 Altera Corporation

APEX 20K MegaLAB

MegaLAB

- Logic Element (LE)
 - 4-Input LUT
 - D Flipflop
 - Carry & Cascade Chains
- ∠ Logic Array Block (LAB)
 - 10 LEs
- ✓ MegaLAB
 - 16 LABs
 - 1 Embedded System Block

New Level of Hierarchy

© 1998 Altera Corporation

DIGITAL SYSTEM DESIGN

Embedded System Block

Enhanced Embedded Structure

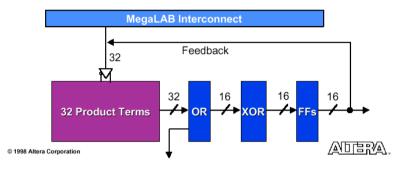
Optimized for System-Level Integration

© 1998 Altera Corporation

Product Term Advantage

- ✓ P-Term Superior for Combinatorial Functions
 - Address Decode, State Machines
- ∠ LUT Superior for Registered Data Path Functions

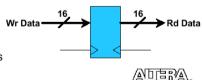
Function	EPF10K100B-1	EPM7064S-5
16-state, 5-input/output State Machine	129 MHz	161 MHz
5 x 5 Registered I/O Multiplier	166 MHz	59 MHz


© 1998 Altera Corporation

DIGITAL SYSTEM DESIGN 3.21 DIGITAL SYSTEM DESIGN

Embedded Product-Term Capability

- ∠ ESB Implements Product-Term Logic
 - 32 Product Terms
 - 16 Programmable DFFs + XOR + Parallel Expanders
- ∠ Can Be Cascaded to Implement Wide Fan-in Functions



Embedded RAM

- Variable Width
 - 2,048 Bits per ESB
 - Easily Combined to Build
 Wider/Deeper Memories

 128 X 16 256 X 8 512 X 4 1.024 X 2 2.048 X 1
- ∠ Dual-Port
 - Independent Read/Write
 - 150-MHz Dual-Port FIFOs
 - Synchronous/Asynchronous

© 1998 Altera Corporation

Content Addressable Memory (CAM)

- CAM Accelerates Fast Search Applications
 - Functions as a Parallel Comparator
 - Order of Magnitude Faster than RAM (Serial)
- ∠ Looks up Data in Memory & Outputs Addresses

Common in High-Speed Communication Applications

© 1998 Altera Corporation

3.22

System-Level Memory Integration

- Efficiently Supports Various RAM Requirements of a System-Level Design
 - Cache RAM, Dual-Port FIFO, ROM

Function	Configuration	Total ESBs	Performance
Cache RAM	256 x 32	4	150 MHz
	4,096 x 64	128	110 MHz
Dual-Port FIFO	128 x 32	2	150 MHz
	128 x 64	4	150 MHz
ROM	256 x 32	4	150 MHz
	4,096 x 64	128	110 MHz

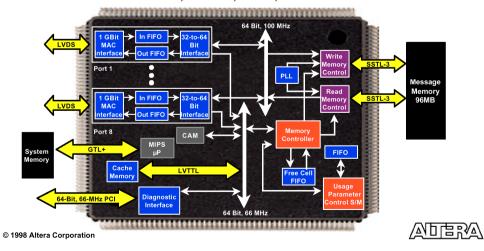
© 1998 Altera Corporation

pykc/2001

pykc/2001

Phase-Locked-Loop

- ✓ Altera First Shipped PLL on FLEX 10K Devices in 1996
- Next-Generation PLL
 - ClockLock[™] Synchronization Circuitry
 - ClockBoost[™] Multiplication Circuitry (1X, 2X & 4X)
 - Extended Frequency Range


Parameter	Min.	Max.	Unit
Output Frequency	1	133	MHz
Input Frequency (x1)	1	133	MHz
Input Frequency (x2)	1	66	MHz
Input Frequency (x4)	1	33	MHz
Clock Jitter		500	ps

© 1998 Altera Corporation

APEX 20K: Complete System Integration

- 1-GBit Ethernet 8-Port Switch
 - 64-Bit, 66-MHz PCI
 - 2.5-V/1.8-V Supply Voltage
 - I/O Interfaces: LVTTL, SSTL-3, GTL+, LVDS

DIGITAL SYSTEM DESIGN 3.24

3.7 Xilinx 4000 Series FPGA

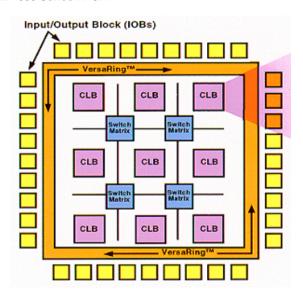
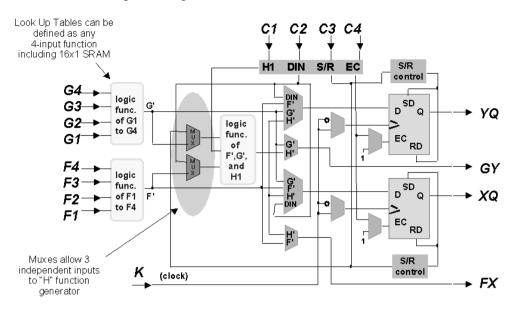
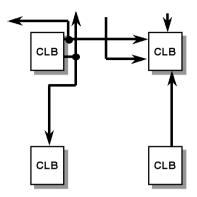


Figure 3.19 Xilinx 4K FPGA chip level architecture

- Xilinx first to introduce SRAM based FPGA using Lookup Tables (LUTs)
- Xilinx 4000 series contains four main building blocks:
- Configurable Logic Block (CLB)
- Switch Matrix
- VersaRing
- Input/Output Block

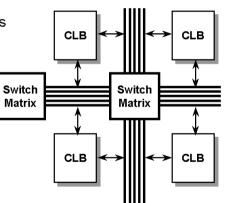
3.7.1 Configurable Logic Block Architecture



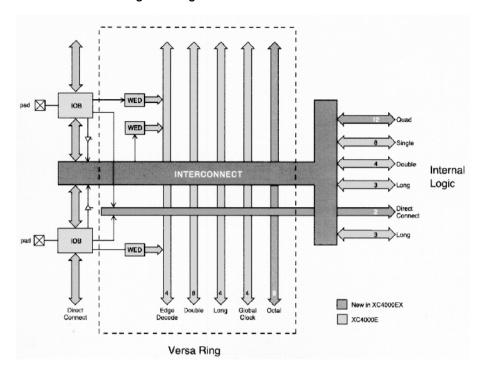

Figure 3.20 Internal architecture of Xilinx 4000 CLB

- Each CLB is more complex than an Altera Logic Element.
- Each CLB has two 4-input LUTs and two reigsters.
- The two LUTs implement two independent logic functions F and G.
- The outputs F' and G' from the two LUTs inside each CLB can be to form a more complex function H.
- Not shown here are carry and cascade chain circuits similar to Altera's FLEX devices.
- For the 4000E familys, each CLB can be configured as synchronous RAM.
 Write address, data, and control are synchronized to write clock. This is called distributed RAM
- · Possible configurations are:
 - 1. Two independent 16 x 1 RAMS
 - 2. One 32 x 1 or 16 x 2 RAM
 - 3. One 16 x 1 dual-port RAM (second port is read-only)

DIGITAL SYSTEM DESIGN 3.26


3.5.2 Neighbourhood Interconnect of Xilinx 4000

- Direct connections from CLB to adjacent CLB or IOB
- Fastest interconnect
 Less than 1 ns delay
- Abundant in XC5000
- ◆ Limited in XC3000
- Limited to special resources in XC4000



3.5.3 Switch Matrix Routing

- Flexible but slow if crosses many channels
- XC3000
 - ❖ 5 lines per channel
- XC4000
 - 8 similar Single-Length lines
 - 4 Double-Length lines skip every other switch matrix
- ◆ XC5000
 - Adds local interconnect matrix

3.5.4 Versa Ring - Routing for I/O Blocks

3.27 DIGITAL SYSTEM DESIGN 3.28

3.7.5 Virtex - The Future for FPGA?

XC4000 Family (Smallest and Largest)

				RAM bits			
<u>Part</u>	<u>Gates</u>	CLB Matrix	<u>CLBs</u>	Flip-Flops	<u>(max)</u>	<u>IOBs</u>	
4003E	3k	10x10	100	360	3.2k	80	
4025E	25k	32x32	1k	2560	33k	256	

Virtex Family (Smallest and Largest)

				RAM bits		
<u>Part</u>	<u>Gates</u>	CLB Matrix	<u>CLBs</u>	Flip-Flops	<u>(max)</u>	<u>IOBs</u>
XCV50	58k	16x24	1.7k	7.6k	57k	180
XCV1000	1124k	64×96	27.6k	112k	524k	512

• Virtex is the new Xilinx family of FPGA with higher density, better routining and larger capacity.