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Introduction The finite impulse response (FIR) filter is used in many digital signal 
processing (DSP) systems to perform signal preconditioning, anti-
aliasing, band selection, decimation/interpolation, low-pass filtering, and 
video convolution functions. Only a limited selection of off-the-shelf FIR 
filter circuits is available; these circuits often limit system performance. 
Therefore, programmable logic devices (PLDs) are an ideal choice for 
implementing FIR filters. 

Altera FLEX devices, including the FLEX 10K and FLEX 8000 families, are 
flexible, high-performance devices that can easily implement FIR filters. 
For example, you can use a FLEX device for one or more critical filtering 
functions in a DSP microprocessor-based application, freeing the DSP 
processor to perform the lower-bit-rate, algorithmically complex 
operations. A DSP microprocessor can implement an 8-tap FIR filter at 
5 million samples per second (MSPS), while an off-the-shelf FIR filter 
circuit can deliver 30 MSPS. In contrast, FLEX devices can implement the 
same filter at over 100 MSPS.

This application note describes how to map the mathematical operations 
of the FIR filter into the FLEX architecture and compares this 
implementation to a hard-wired design. Implementation details—
including performance/device resource tradeoffs through serialization, 
pipelining, and precision—are also discussed.

Conventions Parentheses are used to show which tap or coefficient is being referenced. 
The variable x(n) refers to the nth input sample, e.g., x(6) refers to tap 
number 6. The variable h(n) refers to the nth coefficient of the FIR filter, 
e.g., h(4) refers to coefficient 4. Subscripts are used to distinguish which bit 
in the binary word is being referenced, e.g., x(6)1 denotes the least 
significant bit (LSB) in the sixth tap. All numbering begins with 1 rather 
than 0.
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FIR Filter 
Architecture

This section describes a conventional FIR filter design and how the 
design can be optimized in FLEX devices.

Conventional FIR Filter Design

Figure 1 shows a conventional 8-tap FIR filter architecture. This filter has 
eight 8-bit registers arranged in a shift register configuration. 

Figure 1. Conventional FIR Application

The output of each register is called a tap and is represented by x(n), 
where n is the tap number. Each tap is multiplied by a coefficient h(n) and 
then all the products are summed. The equation for this filter is:

For a linear phase response FIR filter, the coefficients are symmetric 
around the center values. This symmetry allows the symmetric taps to be 
added together before they are multiplied by the coefficients. See 
Figure 2. Taking advantage of the symmetry lowers the number of 
multiplies from eight to four, which reduces the circuitry required to 
implement the filter.
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Figure 2. Adding Symmetric Taps Before Multiplication

Optimizing the FIR Filter with FLEX Devices

The multiplication and addition for the vector multiplier shown in 
Figure 2 can be optimized by using look-up tables (LUTs) in a FLEX 
device. The equation for the vector multiplier is:

y = [s(1) × h(1)] + [s(2) × h(2)] + [s(3) × h(3)] + [s(4) × h(4)] 

The multiplication and addition can be performed in parallel using LUTs. 
The following example uses 2-bit positive integers.

h(1) = 01, h(2) = 11, h(3) = 10, h(4) = 11
s(1) = 11, s(2) = 00, s(3) = 10, s(4) = 01

The multiplication and addition for the vector multiplier are shown in 
Figure 3.
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Figure 3. Vector Multiplier Multiply & Add

The partial products P1(n) and P2(n) can be added either horizontally or 
vertically without changing the result, which is 1010. Because each 
component of h(n) is constant for any fixed-coefficient FIR filter, you can 
use a FLEX LUT to implement the vector multiplier. 

In Figure 3, the four digits shown in bold, blue text are the LSBs of each 
s(n), and are represented by s(n)1. Each partial product P1(n)—
highlighted with the blue bar—is either 00 or the corresponding value of 
the multiplicand’s h(n). The sum of all partial products P1(n) is P1 (in this 
case 100). Because s(n)1 for the 4 multipliers uniquely determines the 
value for P1, there are only 16 possible values for P1. See Table 1. 

Note:
(1) s(n)1 refers to the LSB of each multiplier s(n). In Figure 3, the LSBs are denoted by 

the four digits shown in bold, blue text.

Multiplicand h(n)
Multiplier s(n)

01 11 10 11

11 00 10 01

01 00 00 11Partial Product P1(n)
Partial Product P2(n)

011 000 100 011

= 100

= 011

= 1010

×

+ 01 00 10 00

Table 1. LSB of Each s(n) for Each Partial Product (P1)

 s(n)1   Note (1) P1 Result

0000 0 00 + 00 + 00 + 00 = 0000

0001 h(1) 00 + 00 + 00 + 01 = 0001

0010 h(2) 00 + 00 + 11 + 00 = 0011

0011 h(2) + h(1) 00 + 00 + 11 + 01 = 0100

0100 h(3) 00 + 10 + 00 + 00 = 0010

0101 h(3) + h(1) 00 + 10 + 00 + 01 = 0011

0110 h(3) + h(2) 00 + 10 + 11 + 00 = 0101

0111 h(3) + h(2) + h(1) 00 + 10 + 11 + 01 = 0110

1000 h(4) 11 + 00 + 00 + 00 = 0011

1001 h(4) + h(1) 11 + 00 + 00 + 01 = 0100

1010 h(4) + h(2) 11 + 00 + 11 + 00 = 0110

1011 h(4) + h(2) + h(1) 11 + 00 + 11 + 01 = 0111

1100 h(4) + h(3) 11 + 10 + 00 + 00 = 0101

1101 h(4) + h(3) + h(1) 11 + 10 + 00 + 01 = 0110

1110 h(4) + h(3) + h(2) 11 + 10 + 11 + 00 = 1000

1111 h(4) + h(3) + h(2) + h(1) 11 + 10 + 11 + 01 = 1001
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The partial product P2 can be calculated in the same manner, except the 
result must be shifted left by one bit before adding P1 and P2. In this 
example, the result is four bits wide. Therefore, the adders must be four 
bits wide.

The partial products (P1 and P2) can be calculated by 4-input LUTs in a 
FLEX device. All computations occur in parallel. The partial products can 
be fed into a tree of adders to calculate the final product called y(n) as 
shown in Figure 4.

Figure 4. Four 2-Bit Input Vector Multiplier

This multiplier performs the function [s(4) × h(4)] + [s(3) × h(3)] + [s(2) × h(2)] + [s(1) × h(1)]. Both LUTs consist of 4 
FLEX 16 × 1 LUTs. 

Only one adder is used in Figure 4 because the function has only two bits 
of precision. If more bits of precision are used, additional adders are 
required. See Figure 5. The vector multiplier can be used in a 7-bit input 
FIR filter. The eighth bit comes from adding the two 7-bit symmetric taps.
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Figure 5. Four 8-Bit Input Vector Multiplier

The multipliers increase by a power of 2 for each level, which maintains the correct precision for each 8-bit input.
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The filter in Figure 5 can be pipelined by placing registers at the outputs 
of each adder and LUT. Because FLEX devices have registers at the 
output of every logic cell, adding pipeline registers to the filter does not 
require additional device resources. Pipelining introduces a 5-Clock 
latency for this design.

Implementing 
FIR Filters

This section discusses the issues that must be resolved when 
implementing FIR filters in FLEX devices, including: 

■ Filter architecture
■ Pipelining
■ Scaling
■ Symmetrical and antisymmetrical filters

Filter Architecture

The conventional FIR filter architecture described in the previous section 
is a fully parallel architecture, designed for maximum speed and size. 
However, you can create a smaller, slower filter by serializing the 
multiplications and additions. This section describes the size and speed 
tradeoffs of each architecture. Table 2 summarizes the FIR filter 
architectures.

f Go to the FIR Filter Functional Specification for more information on 
parallel and serial FIR filters.

Parallel FIR Filters

The conventional FIR filter described in “Conventional FIR Filter Design” 
is a fully parallel architecture. The output is a combinatorial function of 
the current and past data values. The LUT that corresponds to the MSB 
actually contains the two’s complement of all the other LUTs to 
implement two’s complement arithmetic. This filter can be pipelined for 
greater efficiency. 

1 For an explanation of two’s complement arithmetic, refer to 
“Two’s Complement Arithmetic” on page 22 of this application 
note.

Table 2. Comparison of FIR Filter Architectures in FLEX 8000A Devices

Filter
Name

Input Precision
(Bits)

Taps Size
(Logic Cells)

Device Clock Rate
(MHz)

Clock Cycles 
per Result

Speed
(MSPS)

MIPS

Parallel 8 16 468 EPF8820A 101 1 101 1,616

Serial 8 16 272 EPF8452A 63 9     7.0    112
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Serial FIR Filters

Figure 6 shows a fully serial FIR filter. This architecture is similar to the 
fully parallel FIR filter, i.e., it uses the FLEX LUT to store the 
precomputed partial products P1, P2 ... Pn, where n = <data width> + 1. 
The serial filter in Figure 6 performs the same computation as the parallel 
filter, but it only processes one bit of the input data at a time. The serial 
filter first computes P1, which is a function of the four bits s(1)1 through 
s(4)1. On each successive cycle the serial filter computes the next partial 
product Pn from inputs s(1)n through s(4)n. The partial products are 
summed in the scaling accumulator, which shifts the previous data right 
by one bit, i.e., during each cycle it divides the previous result by 2. This 
produces a result after <data width> + 1 Clock cycles because when the 
data passes though the symmetric tap adders (at the top of Figure 6) the 
data is <data width> + 1 bits wide (the fully parallel version has 
<data width> + 1 LUTs for the same reason). The serial FIR filter reuses the 
same LUT, rather than using extra circuitry. 



Altera Corporation  9

AN 73: Implementing FIR Filters in FLEX Devices

Figure 6. Fully Serial FIR Filter Schematic

Because the serial filter contains one LUT, it can contain only one set of 
data. Therefore, the accumulator must perform a subtraction when 
calculating the MSB of the data, i.e., the accumulator must have an 
add_sub port. The controller deasserts the add_sub signal when the filter 
computes the MSB. 
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Serial/Parallel FIR Filters

The combined serial/parallel architecture has features from both the 
serial and parallel architectures. See Figure 7. The data shift registers at 
the top of Figure 7 are both serial and parallel. The parallelism in this case 
is two, i.e., two parallel computational chains exist. In contrast, the fully 
serial architecture has only one computational path. The serial/parallel 
filter requires only four Clock cycles to complete the computation. The 
filter in Figure 7 is a 7-bit filter because of possible carry into the eighth 
bit in the symmetric-tap adders. To obtain eight bits of precision on the 
incoming data, you must add another stage to each of the data shift 
registers. 
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Figure 7. Combined Serial/Parallel FIR Filter Schematic
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Figure 8 shows the 4 × 2 shift register in Figure 7.

Figure 8. 4 × 2 Shift Register 

To implement two’s complement arithmetic, LUT2 for the MSB of the 
computation must contain the two’s complement of the value. The adder 
at the bottom of Figure 7, which can be an adder or subtractor depending 
on the control signal add_sub, performs this operation. Every fourth 
cycle add_sub is de-asserted, complementing the output of LUT2. The 
accumulator at the bottom of Figure 7 adds and shifts the data by two bits 
every cycle. 

Pipelining

Pipelining increases the performance of a FIR filter with little or no 
impact on the size of the design. The FLEX architecture has a flipflop in 
each logic cell. Therefore, an adder and a register require only one logic 
cell per bit. If the width of s(n) is not a power of two, extra pipeline 
registers are required to maintain synchronization, which makes the 
pipelined filter less efficient. See Figure 9. 
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Figure 9. Pipelined vs. Non-Pipelined FIR Filter

Scaling

This section discusses how to adjust the number of taps or the bits of 
precision for a FIR filter.

Adjusting the Number of Taps

You can easily create a parallel filter with more than 8 taps by 
implementing 2 or more parallel 8-tap filters—described previously in 
this application note—and assigning different coefficients to each filter. 
Then, add the outputs of each 8-tap filter. See Figure 10.
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Figure 10. 16-Tap Parallel FIR Filter

To create a serial filter with more than 8 taps, implement 2 or more 8-tap 
filters with 1 accumulator at the bottom of all the filters. Figure 11 shows 
a 32-tap filter.

Figure 11. 32-Tap Serial FIR Filter 

Adjusting the Bits of Precision

To add more bits of precision on the input, add additional LUTs to each 
block. For parallel designs, each extra bit of precision requires one 
additional LUT. In serial designs, the computation will take one more 
Clock cycle.
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Symmetric & Antisymmetric Filters

Symmetric filters that implement even functions are created with 
symmetric tap adders. You can create an antisymmetric FIR filter that 
implements an odd function by using symmetric tap subtractors. See 
Figure 12.

Figure 12. Symmetric vs. Antisymmetric Filters
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Truncation & Rounding

Truncation and rounding can be important in a design. Many existing FIR 
filters are not flexible enough to allow you to specify the amount of 
truncation or rounding, potentially wasting device resources.

In contrast, FLEX devices permit you to specify how many bits of 
precision to use when calculating the result of a FIR filter. For an 8-bit 32-
tap filter, keeping every possible bit of precision requires an output word 
19 bits wide. Most applications do not require 19 bits of precision for a 
function with an 8-bit wide input. You should keep only the bits of 
precision necessary for your design to minimize the design size.

Odd-Length Filters

To implement an odd-length filter, simply remove one of the shift register 
stages. See Figure 13.

Figure 13. 7-Tap Odd-Length Filter

n

Vector
Multiplier

x(n)
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Decimating Filter for Sample Rate Reduction

A decimating filter only computes every nth result, where n is the 
decimation factor. You can create a decimating filter by simply 
discarding any unwanted results from a regular FIR filter. For example, 
if the input data rate is 100 MHz, and you want to decimate the data rate 
by 2, the output data rate is only 50 MHz. See Figure 14. However, this 
implementation is not very efficient. The low-pass FIR filter must run at 
the XIN data rate (i.e., 100 MHz), which wastes half of the computations 
performed by the FIR filter.

Figure 14. Typical Decimating Filter

Figure 15 shows the shift register section of a 16-tap, decimate-by-2 FIR 
filter. This filter only computes every other result (i.e., the data skips 
every other register). Therefore, most of the filter runs at the output rate 
rather than the input rate, saving roughly 50% of the power consumed by 
the full-speed filter. The filter in Figure 15 also permits a faster input 
sample rate. For example, if the input data rate is 100 MHz, only the T 
flipflop must run at the 100-MHz rate—the rest of the FIR filter runs at 
50 MHz. To create a filter that decimates by more than two, simply 
reroute the data through the shift register. 
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Figure 15. FLEX Decimating Filter

Interpolating Filter

An interpolating filter (i.e., an up-sampling filter) performs the opposite 
function of a decimating filter—it increases the sample rate by a factor of 
n. One way to perform interpolation is to add extra samples between each 
input data sample, where the added samples are zero. See Figure 16. The 
data stream (with the zeros) is sent through a low-pass filter; the output 
data from the low-pass filter is at a higher sample rate than the input data.

Figure 16. Stuffing Zeros into the Data Stream

Figure 17 shows the interpolating filter block diagram.
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Figure 17. Interpolating Filter

Because much of the input data to the low-pass filter is zero, the shift 
register is always sparsely populated. Figure 18 shows an example of an 
interpolating filter where the data is up-sampled by two. One input to 
each of the symmetric tap adders is always zero. Therefore, the adder is 
not necessary.

Figure 18. Up-Sampling Data by Two

Table 3 shows how s(t) evolves over time when the input data x(n) is 
x(10)x(9)x(8)x(7)x(6)x(5)x(4)x(3)x(2)x(1). Each time snapshot represents 
the value of s(t) at a given time.
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Table 3. Values of s(t) over Time 

s(t) Time

X(1) X(8) X(2) X(7) X(3) X(6) X(4) x(5) T = 1

X(9) X(2) X(8) X(3) X(7) X(4) X(6) x(5) T = 2

X(2) X(9) X(3) X(8) X(4) X(7) X(5) x(6) T = 3

X(10) X(3) X(9) X(4) X(8) X(5) X(7) x(6) T = 4
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Figure 19 shows a graphical representation of how s(t) evolves over time.

Figure 19. s(t) over Time

The data flow switches every other Clock cycle. Figure 20 shows the 
structure that would implement this shift register. You can implement 
the shift register in Figure 20 in a FLEX device using one logic cell per bit. 
Using a regular FIR filter with a zero-stuffed data stream requires three 
logic cells per bit: one to store the data, one to store a zero, and one to 
implement the adder. In a regular 16-tap, 8-bit FIR filter, the shift register 
section requires the following number of logic cells:

The more efficient shift register structure shown in Figure 20 would 
require only 64 logic cells, which saves significant resources.

Figure 20. 64-Logic Cell Shift Register Structure

Two-Dimensional Video Convolution Filter

You can create a two-dimentional convolution filter using the techniques 
described above. Using a symmetric convolution window, you can 
extend the one-dimensional filter to a two-dimensional filter. Figure 21 
shows a symmetric two-dimensional convolution window.
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Figure 21. Symmetric Two-Dimensional Convolution Window

The coefficients C1, C2, and C3 are constants. Figure 22 shows the 
architecture that implements this convolution filter. The two-
dimensional filter uses the same vector multiplier as the one-dimensional 
filter, except only three inputs are used instead of four.

Figure 22. Convolution FIR Filter
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You can implement the two-dimensional filter using the same procedure 
as the one-dimensional filter, but this implementation creates an 
inefficiency because one input from each LUT is not used. The two-
dimensional video convolution filter can run at about 100 MSPS in a 
FLEX 8000A (-2 speed grade) device.

Two’s Complement Arithmetic

Two’s complement arithmetic is a system of representing numbers in 
which the negative of a number is equal to its inverse plus one. The most 
significant bit (MSB) requires special treatment in two’s complement 
arithmetic. One option involves sign-extending each number by one bit, 
adding these sign-extended numbers with a regular adder, and 
discarding the carry-out. For example, for 2-bit two’s complement 
numbers, the range of possible values are –2 through 1. The binary 
equivalents are summarized in Table 4.

When adding positive and negative numbers in two’s complement 
arithmetic, a special procedure must be used. For example, –1 + 1 should 
equal 0 in decimal arithmetic. However, using a regular adder, the binary 
equivalent is 11 + 01 = 100 (i.e., –4). To obtain the correct result, the 
binary numbers must be sign-extended to 3-bit numbers and added, then 
the carry out must be discarded: 111 +001 = 1000 (i.e., –1 + 1 = 0). 

All adders in this application note use two’s complement arithmetic, with 
an adder that is n + 1 bits wide, where n is the width of the input. The 
FLEX architecture implements very fast adders—e.g., carry-chains for the 
MSB—and does not require more logic to implement an adder than any 
other 4-input logic function. Therefore, using a full adder in a FLEX 
device to manipulate the MSB is faster than using an XOR gate.

Table 4. Binary Equivalents for 2-Bit Two’s Complement Numbers

Binary Decimal

00 0

01 1

10 –2

11 –1
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Conclusion There are several ways to implement FIR filters in FLEX devices, 
depending on speed and device resource constraints. The fastest, largest 
filter is a fully parallel pipelined version, which can operate as fast as 
105 MSPS. The fully serial filter is the slowest and smallest and can 
sample at rates of 5.7 MSPS for an 8-bit input width, which is adequate 
for many medium speed applications. The combined serial/parallel filter 
is capable of rates between these two extremes, depending on how much 
of the design is in parallel. For high-speed FIR filter applications, Altera 
FLEX devices provide the most flexibility and best performance.

Revision History The information contained in Application Note 73 (Implementing FIR Filters
in FLEX Devices) version 1.01 supersedes information published in 
Application Note 73 (Implementing FIR Filters in FLEX Devices) version 1.0. 
Version 1.01 includes a corrected multiplier equation in Figure 4.
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