Introduction to Digital Integrated Circuit Design

Peter Y K Cheung Department of Electrical & Electronic Engineering Imperial College London

URL: http://www.ee.ic.ac.uk/pcheung/teaching/ee4_asic/index.html E-mail: p.cheung@imperial.ac.uk

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 1

Aims and Objectives

- ◆ The aim of this course is to introduce the basics of digital integrated circuits design.
- After following this course you will be able to:
 - Comprehend the different issues related to the development of digital integrated circuits including fabrication, circuit design, implementation methodologies, testing, design methodologies and tools and future trends
 - Use tools covering the back-end design stages of digital integrated circuits.

Introduction & Trends

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 2

Course Outline

Week	Lectures	Laboratory/Project		
1	Introduction and Trends			
2	Basic MOS Theory, SPICE Simulation, CMOS Fabrication	Learning Electric & SPICE simulation		
3	Inverters and Combinational Logic	Learning Layout with Electric		
4	Sequential Circuits	Switch-level simulation with IRSIM		
5	Timing and Interconnect Issues	Finishing the previous labs		
6	Data Path Circuits	Design Project		
7	Memory and Array Circuits	Design Project		
8	Low Power Design Package, Power and I/O	Design Project		
9	Design for Test	Design Project		
10	Design Methodologies and Tools	Design Project		

Recommended Books

- ◆ N. H. E. Weste and D. Harris, "CMOS VLSI Design: A Circuits and Systems Perspective", 3rd Edition, Addison-Wesley, ISBN 0-321-14901-7, May 2004.
- ◆ J. Rabaey, A. Chandrakasan, B. Nikolic, "Digital Integrated Circuits: A **Design Perspective**" 2nd Edition. Prentice Hall. ISBN 0131207644. January 2003.
- W. Wolf, "Modern VLSI Design: System-on-Chip Design", 3rd Edition, Prentice Hall. ISBN 0-13-061970-1, 2002.
- ◆ M.J.S. Smith, "Application-Specific Integrated Circuits", Addison-Wesley, ISBN 0-201-50022-1, 1997.
- ◆ L. A. Glasser and D. W. Dobberpuhl, "The Design and Analysis of VLSI Circuits". Addison-Wesley, ISBN 0-201-12580-3, 1985. Detailed analysis of circuits, but largely nMOS.
- C. A. Mead and L. A. Conway, "Introduction to VLSI Systems". Addison-Wesley, ISBN 0-201-04358-0, 1980. The first textbook in this subject, a bit old!

Introduction to Digital Integrated Circuit Design

Supporting Material

- Lectures notes reference to textbooks if relevant
- Material for further reading
- Notes for laboratory/project
- Consult the course web-page:

http://www.ee.ic.ac.uk/pcheung/teaching/ee4_asic/index .html

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 5

Design Project

- Lab sessions: TBA, Mahanakorn Lab (Level 9)
- Spend first 4 weeks learning CAD tools (Electric, IRSIM, SPICE)
 - Public domain tools links from course web-page
 - All tools are installed in the Departmental computers you are encouraged to install them on your PCs
- Spend the remaining weeks working in small groups to design a chip
- ◆ Deadline for completion: Last day of Autumn term
- Deadline for report: First day of Spring term
- Report (one per group) should include:
 - description of circuit designed (full schematic and layout)
 - block diagram showing different module in chip
 - plot of the entire chip
 - evidence that it works (from simulation plots)
 - test strategy and testbench
 - a description of contribution from each member, signed by all!

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 6

Assessment

- May/June examination (open-book) 75%
- Course work designing a chip in a group (3-4 people) 25%

Topic 1 Introduction & Trends

Peter Y K Cheung
Department of Electrical & Electronic Engineering
Imperial College London

URL: http://www.ee.ic.ac.uk/pcheung/teaching/ee4_asic/index.html E-mail: p.cheung@imperial.ac.uk

Based on slides/material by...

- J. Rabaey http://bwrc.eecs.berkeley.edu/Classes/IcBook/instructors.html "Digital Integrated Circuits: A Design Perspective". Prentice Hall
- ◆ D. Harris http://www.cmosvlsi.com/coursematerials.html Weste and Harris, "CMOS VLSI Design: A Circuits and Systems Perspective", Addison Wesley
- M. Smith http://www-ee.eng.hawaii.edu/~msmith/ASICs/HTML/ASICs.htm "Application Specific Integrated Circuits", Addison Wesley

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 9

Recommended Reading

- ◆ J. Rabaey et. al. "Digital Integrated Circuits: A Design Perspective": Chapter 1 (1.1 - 1.2), Chapter 8
- Weste and Harris, "CMOS VLSI Design: A Circuits and Systems Perspective": Chapter 1 (1.1 – 1.2), Chapter 4 (4.9), Chapter 8 (8.5)
- M. Smith, "Application Specific Integrated Circuits": Chapter 1

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 10

Outline

- History
- Implementation methodologies
- Design flow
- Technology scaling
- VLSI/IC economics
- Future trends

Integrated Circuits

- Integrated circuits are made on a thin (a few hundred microns thick), circular silicon wafer
- Each wafer holds hundreds of die
- ◆ Transistors and wiring are made from many layers built on top of one another
- Each successive mask layer has a pattern that is defined using a mask similar to a glass photographic slide
- First group of layers define transistors
- ◆ The remaining layers define metal wires between transistors (interconnect)

A Brief History

- ◆ 1958: First integrated circuit
 - · Flip-flop using two transistors
 - Built by Jack Kilby at Texas Instruments
- 2003
 - Intel Pentium 4 μProcessor (55 million transistors)
 - 512 Mbit DRAM (> 0.5 billion transistors)
- ◆ 53% compound annual growth rate over 45 years
 - · No other technology has grown so fast so long
- Driven by miniaturization of transistors
 - Smaller is cheaper, faster, lower in power!
 - Revolutionary effects on society

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 13

History of Integration

- A gate equivalent is a NAND gate $F = \overline{A \cdot B}$, or four transistors
- ◆ small-scale integration (SSI, ~10 gates per chip, 60's)
- medium-scale integration (MSI, ~100–1000 gates per chip, 70's)
- ◆ large-scale integration (LSI, ~1000–10,000 gates per chip, 80's)
- very large-scale integration (VLSI, ~10,000–100,000 gates per chip, 90's)
- ultra-large scale integration (ULSI, ~1M-10M gates per chip)

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 14

History of Technology

- bipolar technology and transistor-transistor logic (TTL) preceded ...
- metal-oxide-silicon (MOS) technology because it was difficult to make metal-gate n-channel MOS (nMOS or NMOS)
- the introduction of complementary MOS (CMOS) greatly reduced power
- The feature size is the smallest shape you can make on a chip and is measured in λ or lambda

IP based SoC Design

Annual Sales

- 10¹⁸ transistors manufactured in 2003
 - 100 million for every human on the planet

Any Device, Any Time, Anywhere

Outline

- History
- Implementation methodologies
- Design flow
- Technology scaling
- VLSI/IC economics
- Future trends

Implementation Methodologies

Full-custom

- All mask layers are customized in a full-custom IC.
- Full-custom offers the highest performance and lowest part cost (smallest die size) with the disadvantages of increased design time. complexity, design expense, and highest risk.
- Microprocessors were exclusively full-custom, but designers are increasingly turning to semi-custom techniques in this area too.
- Other examples of full-custom ICs are: high-voltage (automobile), analog/digital (communications), or sensors and actuators.
- Makes sense for performance critical parts or if there are no libraries available.

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 21

Custom Design - Layout

Magic Layout Editor (UC Berkeley)

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 22

Standard-Cell-Based ICs

A cell-based ASIC (CBIC—"sea-bick")

- Standard cells
- Possibly megacells, megafunctions, fullcustom blocks, system-level macros (SLMs), fixed blocks, cores, or Functional Standard Blocks (FSBs)
- · All mask layers are customized—transistors and interconnect
- · Custom blocks can be embedded
- · Manufacturing lead time is about eight weeks.

◆ In datapath (DP) logic we may use a datapath compiler and a datapath library. Cells such as arithmetic and logical units (ALUs) are **pitch-matched** to each other to improve timing and density.

Full-custom Standard Cell

Looking down on the layout of a standard cell from a standard-cell library

Routing a Standard Cell-based IC

- ◆ Routing a CBIC (cell-based IC)
 - A "wall" of standard cells forms a flexible block
 - metal2 may be used in a feedthrough cell to cross over cell rows that use metal1 for wiring
 - Other wiring cells: spacer cells, row-end cells, and power cells

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 25

Standard Cell Libraries

- ◆ Use a design kit from the IC vendor
- ◆ Buy an **IC-vendor library** from a **library vendor**
- Build your own cell library

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 26

Macrocell-Based Design

Macrocell-Based Design Example

Gate-Array-Based ICs

- A gate array, masked gate array, MGA, or prediffused array uses macros (books) to reduce turnaround time and comprises a base array made from a base cell or primitive cell. There are three types:
 - · Channeled gate arrays
 - Channelless gate arrays
 - Structured gate arrays
- A channeled gate array
 - The interconnect uses predefined spaces between rows of base cells

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 29

Gate-Array-Based ICs (con't)

- A channelless gate array (channelfree gate array, sea-of-gates array, or SOG array)
 - Routing uses rows of unused transistors

- An embedded gate array or structured gate array (masterslice or masterimage)
 - Either channeled or channelless
 - Custom blocks (the same for each design) can be embedded

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 30

Gate Array Approach - Example

Uncommited Cell

Committed
Cell
(4-input NOR)

Prewired Arrays

- Categories of prewired arrays (or field-programmable devices):
 - Fuse-based (program-once)
 - Non-volatile EPROM based
 - RAM based

Programmable Logic Devices

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 33

EPLD Block Diagram

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 34

Field-Programmable Gate Arrays Fuse-based

Interconnect

Field-Programmable Gate Arrays RAM-based

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 37

RAM-based FPGA Basic Cell (CLB)

Courtesy of Xilinx

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 38

Outline

- History
- Implementation methodologies
- Design flow
- Technology scaling
- ◆ VLSI/IC economics
- Future trends

Design Abstraction Levels

Introduction & Trends

Introduction to Digital Integrated Circuit Design

ASIC Design Flow

- ◆ A design flow is a sequence of steps to design an ASIC
 - Design entry.
 - · Logic synthesis.
 - Pre-layout simulation.
 - Floorplanning.
 - Placement.
 - · Routing.
 - Extraction.
 - Postlayout simulation.

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 41

ASIC Design Flow (con't)

ASIC design flow. Steps 1-4 are logical design, and steps 5-9 are physical design

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 42

Outline

- History
- Implementation methodologies
- Design flow
- Technology scaling
- ♦ VLSI/IC economics
- Future trends

Moore's Law

- In 1965, Gordon Moore, co-founder of Intel, predicted the exponential growth of the number of transistors on an IC (number of transistors per square inch in ICs to double every year)
- Predicted > 65,000 transistors by 1975!
- In subsequent years, the pace slowed down a bit, but density has doubled approximately every 18 months, and this is the current definition of Moore's Law.
- Growth limited by power

Introduction & Trends

 Most experts, including Moore himself, expect Moore's Law to hold for at least another two decades

Introduction & Trends

Moore's Law - Intel Microprocessors

Source: Intel

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 45

Evolution in Complexity

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 46

Why?

- Why more transistors per IC?
 - Smaller transistors
 - Larger dice
- Why faster computers?
 - Smaller, faster transistors
 - Better microarchitecture
 - Fewer gate delays per cycle

Scaling

- The only constant in VLSI/IC design is constant change
- Feature size shrinks by 30% every 2-3 years
 - Transistors become smaller, faster, less power hungry, cheaper to manufacture
 - Noise, reliability issues
 - Current density goes up
 - Wires do not improve (and may get worse)
- Scale factor \$√2
 - Typically
 - Technology nodes

Scaling Implications

- Improved Performance
- Improved Cost
- ◆ Interconnect Woes
- Power Woes
- Productivity Challenges
- Physical Limits

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 49

Performance Improvement

Cost Improvement

◆ In 2003, \$0.01 bought you 100,000 transistors

Interconnect Woes

- ◆ SIA made a gloomy forecast in 1997
 - Delay would reach minimum at 250 180 nm, then get worse because of wires
- But...

Introduction & Trends

- Misleading scale
- Global wires
- ◆ 100 kgate blocks ok Delay (ps)

Reachable Radius

- We can't send a signal across a large fast chip in one cycle anymore
- But the microarchitect can plan around this
 - · Just as off-chip memory latencies were tolerated

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 53

Dynamic Power

- Intel VP Patrick Gelsinger (ISSCC 2001)
 - If scaling continues at present pace, by 2005, high speed processors would have power density of nuclear reactor, by 2010, a rocket nozzle, and by 2015, surface of sun.
 - "Business as usual will not work in the future."
- Intel stock dropped 8% on the next day
- But attention to power is increasing

Introduction & Trends

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 54

Static Power

- ◆ V_{DD} decreases
 - Save dynamic power
 - Protect thin gate oxides and short channels
 - No point in high value because of velocity sat.
- V_t must decrease to maintain device performance
- But this causes exponential increase in OFF leakage
- Major future challenge

Productivity

- Transistor count is increasing faster than designer productivity (gates / week)
 - Bigger design teams
 - More expensive design cost
 - Pressure to raise productivity
 - → Rely on synthesis, IP blocks
 - Need for good engineering managers

Very Few Companies Can Design High-End ICs

Designer productivity growing at slower rate

71981: 100 designer months → ~\$1M

72002: 30,000 designer months → **~\$300M**

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 57

Less First Silicon Success and the Changing Rate of Failures

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 58

Physical Limits

- Will Moore's Law run out of steam?
 - · Can't build transistors smaller than an atom...
- Many reasons have been predicted for end of scaling
 - Dynamic power
 - Subthreshold leakage, tunneling
 - Short channel effects
 - Fabrication costs
 - Electromigration
 - Interconnect delay
- Rumors of demise have been exaggerated

Outline

- History
- Implementation methodologies
- Design flow
- Technology scaling
- ◆ VLSI/IC economics
- Future trends

Integrated Circuits Economics

- ◆ Selling price S_{total}
 - $S_{total} = C_{total} / (1-m)$
- ♦ m = profit margin
- ◆ C_{total} = total cost
 - Nonrecurring engineering cost (NRE)
 - Recurring cost
 - Fixed cost

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 61

Non-Recurring Engineering Costs (NRE)

- Engineering cost
 - Depends on size of design team
 - Include benefits, training, computers
 - CAD tools:
 - → Digital front end: \$10K
 - → Analog front end: \$100K
 - → Digital back end: \$1M
- Prototype manufacturing
 - Mask costs: \$500k 1M in 130 nm process
 - Test fixture and package tooling

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 62

Recurring Costs

- Fabrication
 - Wafer cost / (Dice per wafer * Yield)
 - Wafer cost: \$500 \$3000
 - Dice per wafer:

$$N = \pi \left\lceil \frac{r^2}{A} - \frac{2r}{\sqrt{2A}} \right\rceil$$

• Yield: Y = e-AD

7 For small A, Y ≈ 1, cost proportional to area **7** For large A, Y \rightarrow 0, cost increases exponentially

- Packaging
- Test

Fixed Cost

- Data sheets and application notes
- Marketing and advertising
- Yield analysis

New IC Design is Fairly Capital Intensive

- Estimated capital to start a company to design a wireless communication IC
- Digital designers (7):
 - \$70k salary
 - \$30k overhead
 - \$10k computer
 - \$10k CAD tools
 - Total: \$120k * 7 = \$840k
- Analog designers (3)
 - \$100k salary
 - \$30k overhead
 - \$10k computer
 - \$100k CAD tools
 - Total: \$240k * 3 = \$720k

- Support staff (5)
 - \$45k salary
 - \$20k overhead
 - \$5k computer
 - Total: \$70k * 5 = \$350k
- Fabrication
 - Back-end tools: \$1M
 - Masks: \$1M
 - Total: \$2M / year
- Summary
 - 2 years @ \$3.91M / year
 - \$8M design & prototype

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 65

Cost Breakdown

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 66

Outline

- History
- Implementation methodologies
- Design flow
- Technology scaling
- VLSI/IC economics
- Future trends

Introduction & Trends

Evolution of Intel Microprocessors

1982 1997 1999 1993 Introduction to Digital Integrated Circuit Design

Intel Microprocessors Summary

◆ 10⁴ increase in transistor count, clock frequency over 30 years!

Table 4.19 History of Intel microprocessors over three decades						
Processor	Year	Feature Size (μm)	Transistors	Frequency (MHz)	Word size	Package
4004	1971	10	2.3k	0.75	4	16-pin DIP
8008	1972	10	3.5k	0.5-0.8	8	18-pin DIP
8080	1974	6	6k	2	8	40-pin DIP
8086	1978	3	29k	5-10	16	40-pin DIP
80286	1982	1.5	134k	6-12	16	68-pin PGA
Intel386	1985	1.5-1.0	275k	16-25	32	100-pin PGA
Intel486	1989	1-0.6	1.2M	25-100	32	168-pin PGA
Pentium	1993	0.8-0.35	3.2-4.5M	60-300	32	296-pin PGA
Pentium Pro	1995	0.6-0.35	5.5M	166-200	32	387-pin MCM PGA
Pentium II	1997	0.35-0.25	7.5M	233-450	32	242-pin SECC
Pentium III	1999	0.25-0.18	9.5-28M	450-1000	32	330-pin SECC2
Pentium 4	2001	0.18-0.13	42–55M	1400-3200	32	478-pin PGA

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 69

Silicon in 2010

Die Area: 2.5x2.5 cm Voltage: 0.6 V Technology: 0.07 μm

	Density	Access Time
	(Gbits/cm2)	(ns)
DRAM	8.5	10
DRAM (Logic)	2.5	10
SRAM (Cache)	0.3	1.5

	Density	Max. Ave. Power	Clock Rate	
	(Mgates/cm2)	(W/cm2)	(GHz)	
Custom	25	54	3	
Std. Cell	10	27	1.5	
Gate Array	Gate Array 5		1-1-	
Single-Mask GA	2.5	12.5	0.7	
FPGA 0.4		4.5	0.25	

Introduction & Trends

Introduction to Digital Integrated Circuit Design

Topic 1 - 70

ITRS

- Semiconductor Industry Association forecast
 - Intl. Technology Roadmap for Semiconductors

Table 4.17 Predictions from the 2002 ITRS						
Year	2001	2004	2007	2010	2013	2016
Feature size (nm)	130	90	65	45	32	22
$V_{DD}(V)$	1.1-1.2	1-1.2	0.7-1.1	0.6-1.0	0.5-0.9	0.4-0.9
Millions of transistors/die	193	385	773	1564	3092	6184
Wiring levels	8-10	9-13	10-14	10-14	11-15	11–15
Intermediate wire pitch (nm)	450	275	195	135	95	65
Interconnect dielectric	3-3.6	2.6-3.1	2.3-2.7	2.1	1.9	1.8
constant						
I/O signals	1024	1024	1024	1280	1408	1472
Clock rate (MHz)	1684	3990	6739	11511	19348	28751
FO4 delays/cycle	13.7	8.4	6.8	5.8	4.8	4.7
Maximum power (W)	130	160	190	218	251	288
DRAM capacity (Gbits)	0.5	1	4	8	32	64

Summary

- Integrated circuits are the faster growing technology the last 45 years
- Different implementation methodologies
 - Trade-off: design and turn around time vs design density and performance
- Abstraction is the basis of design flows and tools
- ◆ The only constant in VLSI design is scaling
 - Moore's Law and implications
- The development of integrated circuits requires large investment
- ◆ 32nm in 2013, what next?

Journals and Conferences

- ◆ IEEE Journal of Solid State Circuits
- ◆ IEICE Transactions on Electronics (Japan)
- ◆ IEEE Transactions on VLSI Systems
- ◆ International Solid-State and Circuits Conference (ISSCC)
- VLSI Circuits Symposium
- Custom Integrated Circuits Conference (CICC)
- European Solid-State Circuits Conference (ESSCIRC)
- International ASIC Conference

Further Reading

- Original article by Moore
- ◆ Article on Moore's Law

Introduction & Trends

- International Technology Roadmap for Semiconductors (2003 Edition, 2004 Update)
- ◆ Assignment: Analysis of ITRS 2003 Edition (or 2004 update)