Sequential Circuits

Outline

- Bi – Stability / Meta – Stability
- Latches
- Flip – flops
- Schmitt Trigger
- Multivibrator circuits
- Counters and sequential machines

Combinational vs. Sequential Logic

(a) Combinational

\[\text{Output} = f(\text{In}) \]

(b) Sequential

\[\text{Output} = f(\text{In}, \text{Previous In}) \]
Sequential Logic

2 storage mechanisms
- positive feedback
- charge-based

Positive Feedback: Bi-Stability

Positive Feedback: Bi-Stability

Meta-Stability

Gain should be larger than 1 in the transition region

Outline

- Bi-Stability / Meta-Stability
- Latches
- Flip-flops
- Schmitt Trigger
- Multivibrator circuits
- Counters and sequential machines
D Latch

- When \(\text{CLK} = 1 \), latch is *transparent*
 - \(D \) flows through to \(Q \) like a buffer
- When \(\text{CLK} = 0 \), the latch is *opaque*
 - \(Q \) holds its old value independent of \(D \)
- transparent latch or level-sensitive latch

![D Latch Diagram]

D Latch Design

- Multiplexer chooses \(D \) or old \(Q \)

![D Latch Design Diagram]

D Latch Operation

- \(\text{CLK} = 1 \)
 - \(D \rightarrow Q \)

- \(\text{CLK} = 0 \)
 - \(D \rightarrow Q \)

![D Latch Operation Diagram]

Latch Design

- Pass Transistor Latch
 - **Pros**
 - Tiny
 - Low clock load
 - **Cons**
 - \(V_t \) drop
 - Nonrestoring
 - Backdriving
 - Output noise sensitivity
 - Dynamic
 - Diffusion input

Used in 1970's
Latch Design

- Transmission gate
 - No V_t drop
 - Requires inverted clock

- Inverting buffer
 - Restoring
 - No backdriving
 - Fixes either
 - Output noise sensitivity
 - Or diffusion input
 - Inverted output

- Tristate feedback
 - Static
 - Backdriving risk
 - Static latches are now essential

- Buffered input
 - Fixes diffusion input
 - Noninverting
Latch Design

- Buffered output
 - No backdriving

- Widely used in standard cells
 - Very robust (most important)
 - Rather large
 - Rather slow
 - High clock loading

Datapath latch

- Smaller, faster
 - Unbuffered input

Outline

- Bi – Stability / Meta – Stability
- Latches

- Flip – flops
- Schmitt Trigger
- Multivibrator circuits
- Counters and sequential machines

D Flip-flop

- When CLK rises, D is copied to Q
- At all other times, Q holds its value

 positive edge-triggered flip-flop, master-slave flip-flop
D Flip-flop Design

- Built from master and slave D latches

D Flip-flop Operation

Flip-Flop: Timing Definitions

Maximum Clock Frequency
Flip-Flop Design

- Flip-flop is built as pair of back-to-back latches

Enable

- Enable: ignore clock when en = 0
 - Mux: increase latch D-Q delay
 - Clock Gating: increase en setup time, skew

Reset

- Force output low when reset asserted
- Synchronous vs. asynchronous

Set / Reset

- Set forces output high when enabled
- Flip-flop with asynchronous set and reset
SR-Flip Flop

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Q</th>
<th>(\bar{Q})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Q</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

JK-Flip Flop

<table>
<thead>
<tr>
<th>(J_n)</th>
<th>(K_n)</th>
<th>(Q_{n+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(Q_n)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(Q_n)</td>
</tr>
</tbody>
</table>

(a)
(b)
(c)

Other Flip-Flops

- **Toggle Flip-Flop**
- **Delay Flip-Flop**

Master-Slave Flip-Flop

- **Master**
- **Slave**

- **RESET**
- **CLEAR**
Edge Triggered Flip-Flop

![Flip-Flop Diagram]

Race Condition

- Back-to-back flops can malfunction from clock skew
 - Second flip-flop fires late
 - Sees first flip-flop change and captures its result
 - Called *hold-time failure or race condition*

![Race Condition Diagram]

Nonoverlapping Clocks

- Nonoverlapping clocks can prevent races
 - As long as nonoverlap exceeds clock skew
- Can be used for safe design
 - Industry manages skew more carefully instead

![Nonoverlapping Clocks Diagram]

CMOS Clocked SR-FlipFlop

![CMOS Clocked SR-FlipFlop Diagram]
Flip-Flop: Transistor Sizing

Charge-Based Storage

6 Transistor CMOS SR-Flip Flop

Master-Slave Flip-Flop

(a) Schematic diagram
(b) Non-overlapping clocks

Pseudo-static Latch

Overlapping Clocks Can Cause
• Race Conditions
• Undefined Signals
2 phase non-overlapping clocks

![Diagram of 2 phase non-overlapping clocks]

Flip-flop insensitive to clock overlap

![Diagram of flip-flop insensitive to clock overlap]

C²MOS avoids Race Conditions

![Diagram of C²MOS avoids Race Conditions]

2-phase dynamic flip-flop

![Diagram of 2-phase dynamic flip-flop]

C²MOS LATCH

![Diagram of C²MOS LATCH]
Pipelining

<table>
<thead>
<tr>
<th>Clock Period</th>
<th>Adder</th>
<th>Absolute Value</th>
<th>Logarithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a_1 - b_1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$a_2 + b_2$</td>
<td>$</td>
<td>a_2 + b_2</td>
</tr>
<tr>
<td>3</td>
<td>$a_3 - b_3$</td>
<td></td>
<td>$\log(</td>
</tr>
<tr>
<td>4</td>
<td>$a_4 + b_4$</td>
<td>$</td>
<td>a_4 + b_4</td>
</tr>
<tr>
<td>5</td>
<td>$a_5 - b_5$</td>
<td></td>
<td>$\log(</td>
</tr>
</tbody>
</table>

Non-pipelined version

Pipelined version

Pipelined Logic using C²MOS

What are the constraints on F and G?

NORA CMOS Modules

Combinational logic

Latch

Doubled C²MOS Latches

Doubled n-C²MOS latch

Doubled n-C²MOS latch
TSPC - True Single Phase Clock Logic

- Including logic into the latch
- Inserting logic between latches

Master-Slave Flip-flops

(a) Positive edge-triggered D flip-flop
(b) Negative edge-triggered D flip-flop
(c) Positive edge-triggered D flip-flop using split-output latches

Outline

- Bi – Stability / Meta – Stability
- Latches
- Flip – flops
- Schmitt Trigger
- Multivibrator circuits
- Counters and sequential machines

Schmitt Trigger

- VTC with hysteresis
- Restores signal slopes
Noise Suppression using Schmitt Trigger

CMOS Schmitt Trigger

Schmitt Trigger Simulated VTC

CMOS Schmitt Trigger (2)
Outline

- Bi-Stability / Meta-Stability
- Latches
- Flip-flops
- Schmitt Trigger
- Multivibrator circuits
- Counters and sequential machines

Multivibrator Circuits

- Bistable Multivibrator
- Monostable Multivibrator
- Astable Multivibrator

Transition-Triggered Monostable

- Trigger circuit.
- Waveforms.

Monostable Trigger (RC-based)
Astable Multivibrators (Oscillators)

Ring Oscillator

simulated response of 5-stage oscillator

Voltage Controller Oscillator (VCO)

Simulated response of 5-stage oscillator

Current starved inverter

propagation delay as a function of control voltage

Relaxation Oscillator

\[T = 2 \left(\log_3 \right) RC \]

Outline

- Bi – Stability / Meta – Stability
- Latches
- Flip – flops
- Schmitt Trigger
- Multivibrator circuits
- Counters and sequential machines
One-bit counter implementation

![Diagram of one-bit counter implementation](image)

One-bit counter operation

- All operations are performed as $s \phi_2$.
- XOR computes next value of this bit of counter.
- NAND/inverter compute carry-out.

n-bit counter structure

Sequence: $c_{out,n-1}, c_{in,n-1}, b_{n-1}, c_{out,n-2}, c_{in,n-2}, b_{n-2}, \ldots, c_{out,0}, c_{in,0}, b_0, 1$

Sequential machines

- Use memory elements to make primary output values depend on state + primary inputs.
- Varieties:
 - Mealy—outputs function of present state, inputs;
 - Moore—outputs depend only on state.
Sequential machine definition

- Machine computes next state \(N \), primary outputs \(O \) from current state \(S \), primary inputs \(I \).
- Next-state function:
 - \(N = \delta(I, S) \).
- Output function (Mealy):
 - \(O = \lambda(I, S) \).

FSM structure

- Primary inputs
- Combinational logic
- Memory elements
- Primary outputs
- Clock

Summary

- **Bi-stable sequential circuits**
 - Latches (level sensitive circuits)
 - Flip-flops (edge triggered circuits)

- **Non bi-stable sequential circuits**
 - Schmitt Trigger (responds fast to a slowly changing input)
 - Multivibrator circuits
 - Monostable (only one stable state – generates pulse of predetermined width)
 - Astable (no stable states – output oscillates between two quasi stable states)