E 4.20 Introduction to Digital Integrated Circuit Design

Peter Cheung
Department of Electrical & Electronic Engineering
Imperial College London

URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk

PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 1

Recommended Books

- Rabaey, J. et al "Digital Integrated Circuits: A Design Perspective"
 2nd Ed. ISBN: 0131207644 (16 January, 2003) Publisher: Prentice Hall. (£45)
- Weste, N. H. E., and Harris, D. "CMOS VLSI Design" 3rd Edition, ISBN 0-321-14901-7, Addison-Wesley, 2005. (£66) updated classic
- Smith, M.J.S. 1997. "Application-Specific Integrated Circuits".
 Reading, MA: Addison-Wesley, 1026 p. ISBN 0-201-50022-1.
 - Good book and bargain buy (£25 £45). Well written and worth buying.
- Glasser, L. A., and D. W. Dobberpuhl. 1985. "The Design and Analysis of VLSI Circuits". Reading, MA: Addison-Wesley, 473 p. ISBN 0-201-12580-3.
 - Detailed analysis of circuits, but largely for nMOS (Hard to find).
- Mead, C. A., and L. A. Conway. 1980. "Introduction to VLSI Systems". Reading, MA: Addison-Wesley, 396 p. ISBN 0-201-04358-0.
 - The first textbook in this subject, included for historical value only.

Aims and Objectives

- Understand how full-custom VLSI chips are designed
 - Different design styles and technologies
 - Design abstractions and hierarchies
 - Partitioning and architecture
- Learn to design digital IC circuits
 - Static and dynamic logic
 - Sequential logic in IC
 - · Datapaths and memories
 - · Testing and design-for-test
- Learn CAD tools for IC designs
 - Layout of full-custom CMOS IC's using Electric
 - · Simulation using SPICE
 - Simulation using logic simulators: IRSIM & Verilog
 - · Other design verification tools
- Have fun!

PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 2

Supporting Material

- Reading material each week to support lectures
- Clearly defined targets
- Reference to textbook if relevant
- Consult my course web-page:

http://www.ee.ic.ac.uk/pcheung/teaching/ee4_asic/

PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 3 PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 4

Assessment, Practical work, Project

- Course work designing a chip in a group (3-4 people) 25%
- May examination (open-book) 75%
- Spend first 4 weeks learning CAD tools (Electric, IRSIM, SPICE)
- Spend the remain weeks working in small group to design a chip
- Deadline for completion: Last day of Spring term
- Deadline for report: First day of Summer term
- Report (one per group) should include:
 - description of circuit designed (full schematic and layout)
 - block diagram showing different module in chip
 - · plot of the entire chip
 - evidence that it works (from simulation plots)
 - test strategy and testbench
 - a description of contribution from each member, signed by all!

ASIC and all that! (based on slides by M. Smith)

- ◆ An ASIC ("a-sick") is an application-specific integrated circuit
- A gate equivalent is a NAND gate F = A B, or four transistors
- History of integration:
 - small-scale integration (SSI, ~10 gates per chip, 60's)
 - medium-scale integration (MSI, ~100–1000 gates per chip, 70's)
 - large-scale integration (LSI, ~1000–10,000 gates per chip, 80's)
 - very large-scale integration (VLSI, ~10,000–100,000 gates per chip, 90's)
 - ultra-large scale integration (ULSI, ~1M-10M gates per chip)
- History of technology:
 - bipolar technology and transistor-transistor logic (TTL) preceded ...
 - metal-oxide-silicon (MOS) technology because it was difficult to make metal-gate n-channel MOS (nMOS or NMOS)
 - the introduction of **complementary MOS** (**CMOS**) greatly reduced power

Lecture 1

Introduction & Trends

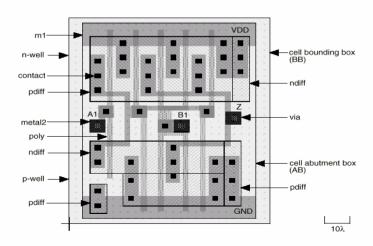
Peter Cheung
Department of Electrical & Electronic Engineering
Imperial College London

(Weste&Harris Ch 1; Rabaey Ch1)

URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk

+ ASIC and all that!

- The feature size is the smallest shape you can make on a chip and is measured in λ or lambda
- Origin of ASICs:
 - standard parts initially used to design microelectronic systems
 - gradually replaced with a combination of glue logic, custom ICs, dynamic random-access memory (DRAM) and static RAM (SRAM)
- Key conferences: The IEEE Custom Integrated Circuits Conference (CICC) and IEEE International ASIC Conference document the development of ASICs
- Application-specific standard products (ASSPs) are a cross between standard parts and ASICs

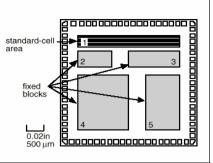

PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 7 PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 8

Full-custom ASIC

- All mask layers are customized in a full-custom ASIC.
- It only makes sense to design a full-custom IC if there are no libraries available.
- Full-custom offers the highest performance and lowest part cost (smallest die size) with the disadvantages of increased design time, complexity, design expense, and highest risk.
- Microprocessors were exclusively full-custom, but designers are increasingly turning to semicustom ASIC techniques in this area too.
- Other examples of full-custom ICs or ASICs are requirements for highvoltage (automobile), analog/digital (communications), or sensors and actuators.

PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 9

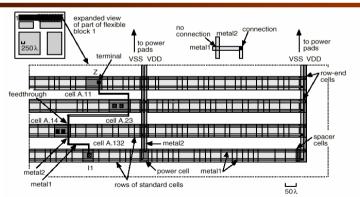
Full-custom Standard Cell


Looking down on the layout of a standard cell from a standard-cell library

PYKC 12-Jan-05

Standard-Cell-Based ASICs

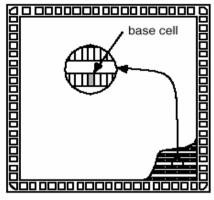
A cell-based ASIC (CBIC—"sea-bick")


- Standard cells
- Possibly megacells, megafunctions, fullcustom blocks, system-level macros (SLMs), fixed blocks, cores, or Functional Standard Blocks (FSBs)
- All mask layers are customized—transistors and interconnect
- · Custom blocks can be embedded
- · Manufacturing lead time is about eight weeks.

In datapath (DP) logic we may use a datapath compiler and a
datapath library. Cells such as arithmetic and logical units (ALUs)
are pitch-matched to each other to improve timing and density.

PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 10

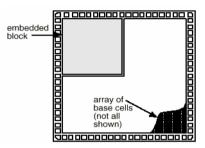
Cell-based IC

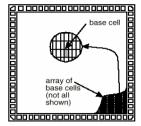


- Routing a CBIC (cell-based IC)
 - A "wall" of standard cells forms a flexible block
 - metal2 may be used in a feedthrough cell to cross over cell rows that use metal1 for wiring
 - Other wiring cells: spacer cells, row-end cells, and power cells

E4.20 Digital IC Design Lecture 1 - 11 PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 12

Gate-Array-Based ASICs

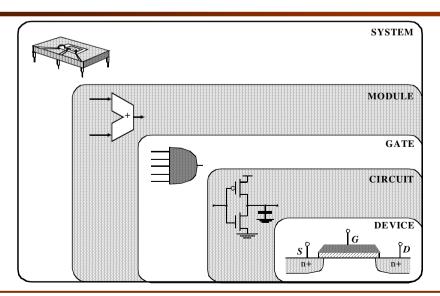

- A gate array, masked gate array, MGA, or prediffused array uses macros (books) to reduce turnaround time and comprises a base array made from a base cell or primitive cell. There are three types:
 - Channeled gate arrays
 - Channelless gate arrays
 - Structured gate arrays
- A channeled gate array
 - Only the interconnect is customized
 - The interconnect uses predefined spaces between rows of base cells
 - Manufacturing lead time is between two days and two weeks



PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 13

Gate-Array-Based ASICs (con't)

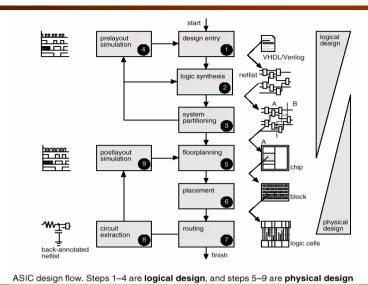
- A channelless gate array (channelfree gate array, sea-of-gates array, or SOG array)
 - Only some (the top few) mask layers are customized — the interconnect
 - Manufacturing lead time is between two days and two weeks.



- An embedded gate array or structured gate array (masterslice or masterimage)
 - · Only the interconnect is customized
 - Custom blocks (the same for each design) can be embedded
 - Manufacturing lead time is between two days and two weeks.

PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 14

Design Abstraction Levels


Design Flow

A design flow is a sequence of steps to design an ASIC

- Design entry. Using a hardware description language (HDL) or schematic entry.
- ♦ **Logic synthesis**. Produces a **netlist**—logic cells and their connections.
- System partitioning. Divide a large system into ASIC-sized pieces.
- Pre-layout simulation. Check to see if the design functions correctly.
- Floorplanning. Arrange the blocks of the netlist on the chip.
- ◆ Placement. Decide the locations of cells in a block.
- Routing. Make the connections between cells and blocks.
- Extraction. Determine the resistance and capacitance of the interconnect.
- Postlayout simulation. Check to see the design still works with the added loads of the interconnect.

PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 15 PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 16

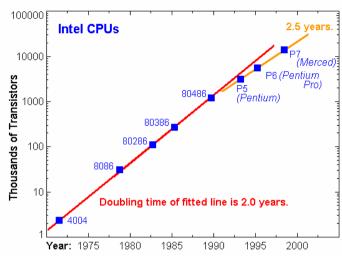
Design Flow (con't)

PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 17

IP based SOC Design Platform 1 Product 2 Product 3 Product 1 Product n System, board, hardware chip optimization trade-offs **WindRiver** Artisan Cell libraries Software Processors cadence Digital IP Testing cadence Packaging Memory **✓ np**test Foundry ASE INC PYKC 12-Jan-05 E4.20 Digital IC Design

ASIC Cell Libraries

- Use a design kit from the ASIC vendor
 - Usually a phantom library—the cells are empty boxes, or phantoms, you hand off your design to the ASIC vendor and they perform phantom instantiation (Synopsys CBA)
- ♦ Buy an ASIC-vendor library from a library vendor
 - buy-or-build decision. You need a qualified cell library (qualified by the ASIC foundry) If you own the masks (the tooling) you have a customerowned tooling solution (which is becoming very popular)
- Build your own cell library
 - involves a complex library development process: cell layout; behavioral model; Verilog/VHDL model; timing model; test strategy; characterization; circuit extraction; process control monitors (PCMs) or drop-ins; cell schematic; cell icon; layout versus schematic (LVS) check; cell icon; logic synthesis; retargeting; wire-load model; routing model; phantom


PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 18

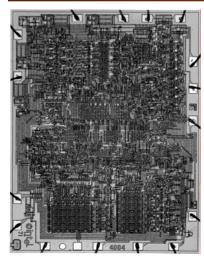
Challenges in VLSI

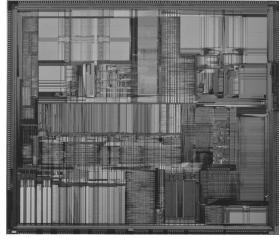
- Gordon Moore, co-founder of Intel, observed in 1965 that number of transistors per square inch in ICs doubled every year.
- In subsequent years, the pace slowed down a bit, but density has doubled approximately every 18 months, and this is the current definition of Moore's Law.
- Most experts, including Moore himself, expect Moore's Law to hold for at least another two decades.

PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 20

+ Moore's Law

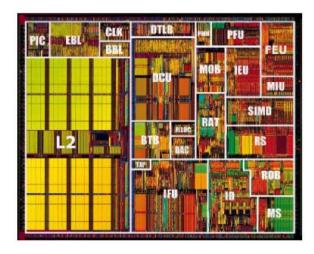
Source: Intel

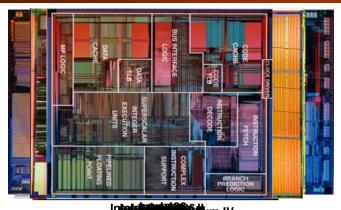

 PYKC 12-Jan-05
 E4.20 Digital IC Design
 Lecture 1 - 21


Intel microprocessors

	Year of introduction	Transistors
4004	1971	2,250
8008	1972	2,500
8080	1974	5,000
8086	1978	29,000
286	1982	120,000
386™ processor	1985	275,000
486™ DX processor	1989	1,180,000
Pentium® processor	1993	3,100,000
Pentium II processor	1997	7,500,000
Pentium III processor	1999	24,000,000
Pentium 4 processor	2000	42,000,000

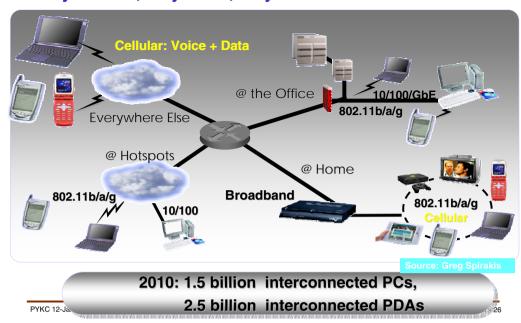
PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 22


Intel Microprocessor - 4004 & Pentium II

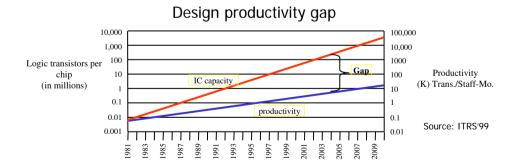


Intel Pentium III

- ◆ Intel Pentium III
- 0.18 micron process
- ♦ 28 million transistors



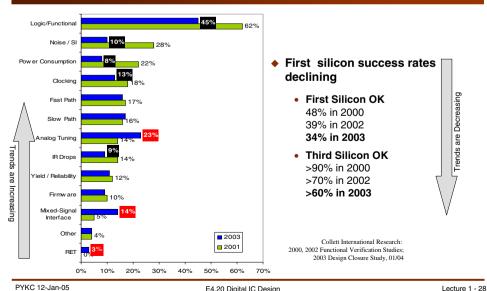
The Complexity Problem



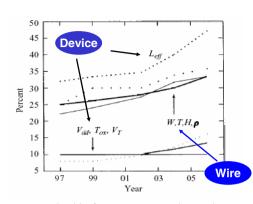
PYKC 12-Jan-05 Lecture 1 - 25 E4.20 Digital IC Design

Any Device, Any Time, Anywhere

Very Few Companies Can Design High-End ICs

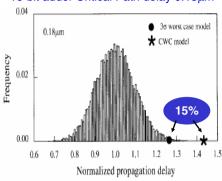


Designer productivity growing at slower rate


7 1981: 100 designer months → ~\$1M **7** 2002: 30,000 designer months → ~\$300M

Less First Silicon Success

and the Changing Rate of Failures



Process Variability Dealing with Uncertainty

Source: "Models of process variations in device and interconnect" by Duane Boning, MIT & Sani Nassif, IBM ARL.

16-bit adder Critical Path delay 0.18µm

"Impact of Unrealistic Worst Case Modeling on the Performance of VLSI circuits in Deep Submicron Region CMOS Technologies"- A.Nardi, A.Neviani, E.Zanoni,M.Quarantelli, IEEE '99

PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 29

Further Reading

- Moore's Law article
- ◆ International Technology Roadmap for Semiconductors (2003 Edition)

PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 31

Silicon in 2010

Die Area: 2.5x2.5 cm Voltage: 0.6 V Technology: 0.07 μm

	Density	Access Time
	(Gbits/cm2)	(ns)
DRAM	8.5	10
DRAM (Logic)	2.5	10
SRAM (Cache)	0.3	1.5

	Density	Max. Ave. Power	Clock Rate
	(Mgates/cm2)	(W/cm2)	(GHz)
Custom	25	54	3
Std. Cell	10	27	1.5
Gate Array	5	18	1-
Single-Mask GA	2.5	12.5	0.7
FPGA	0.4	4.5	0.25

PYKC 12-Jan-05 E4.20 Digital IC Design Lecture 1 - 30