NETWORK SECURITY E4.44/SO21 Dr Peter Beevor	 Network Security Issues Information of value to attacker (passive attack) Information manipulated by attacker (active attack) Authorised user impersonated by attacker Value transaction repudiated by a fraudster Pay per view broadcasts available to non subscribers
Cryptographic Coding $y = E_k f(x)$ x is the messagey is the encrypted message or ciphertextE(.) is the encryption algorithmk1 is the encryption keyEncryption should be reversible so that	 Objectives Cryptographic techniques and their mathematical basis Use of cryptographic techniques to solve security problems Security systems to protect public and private networks
$x = D_{k2}(y)$	

Course Content Cryptography Symmetric key DES/IDEA/AES Cryptography Authentication Modes of Operation ECB/CBC/CFB Issues in Network Security Hashes and message digests • Systems and Standards • Public key RSA Diffie Hellman Elliptic Curve Authentication Issues in Network Security Password Security in public and private networks Network Address Security in OSI 7 layer model • Cryptographic Denial of service attacks Key Distribution Centres • Perfect forward secrecy Certification Authorities Public Key infrastructure Security Handshakes Firewalls Strong password protocols Security on the web

Suggested Reading
 Network Security: Private communication in a public world.Kaufman, C, Perlman, R and Speciner, M. Prentice Hall 2002 Applied Cryptography. Schneier, B. John Wiley, 1996
Methods of Attack • Ciphertext only • Known plaintext • Chosen plaintext

Ciphertext only attack

- Knowledge of original message statistics
- Exhaustive key search leads to recognisable plaintext
- Specific knowledge of type of encryption scheme used

Ciphertext Only Example

Cqrb rb j wng lxdabn rw wncfxat bnidarch

Known to be a Caesar cipher

Clues are in the one and two letter words

And in the letter frequency r,b,n (4), a,c (3)

This is a new course in network security

Authentication

- Cryptographic challenge / response
- A and B share key k and agree cryptographic function F(.)
- A sends random number n to B
- B returns $F_k(n)$ to A
- A compares B's return with his own $F_{\mu}(n)$
- Similarly B authenticates A

Message Authentication Code (MAC)

- Short code appended to message dependant on message and source identity
- Type of cryptographic CRC
- Typically length of message >> MAC
- Key component of financial security systems (e.g. S.W.I.F.T.)

Private and Public Authentication Systems

- Private systems use common key for creating and checking MAC
- Public systems use private key to create and public key to check
- In public key systems the MAC is known as a digital signature and provides non-repudiation.