PUBLIC KEY ALGORITHMS

Diffie – Hellman Digital Signature Standard Zero Knowledge Proof

DIFFIE - HELLMAN

- Overview
- Method
- Bucket Brigade Attack
- Safe Primes

Diffie Hellman Overview

- Predates RSA and still in use
- Public exchange yields shared secret
- Vulnerable to impersonation without authentication

Diffie – Hellman Method (I)

- Large prime p and g (< p) are made public
- Parties A and B each choose 512 bit secrets S_{A} and S_{B}
- A calculates $T_A = g^{S_A} \mod p$
- B calculates $T_B = g^{S_B} \mod p$
- A and B exchange $\rm T_{A}^{}$ and $\rm T_{B}^{}$

A $\overline{T_A, g, p}$ T _B A and B have no	C C knowledge th both A and		B
A T _B A and B have no shared secret wit	knowledge	• $T_{\rm B}^{\prime}$ of C who has ar	
T _B A and B have no shared secret wit	knowledge	of C who has ar	
shared secret wit	th both A and		rranged a
A and B have no knowledge of C who has arranged a shared secret with both A and B for secure communications			
Safe Primes			
 If p is prime and (p – 1)/2 is prime, and g^x≠_x 1 mod p unless x = 0 mod p-1, then p is a safe prime p and g should be changed regularly 			
	 If p is prime a (p – 1)/2 is g[×]≠_x 1 mod p is a safe pr 	 If p is prime and (p – 1)/2 is prime, and g^x≠_x 1 mod p unless p is a safe prime 	 If p is prime and (p – 1)/2 is prime, and g^x≠_x 1 mod p unless x = 0 mod p p is a safe prime

 DSS Algorithm Generating DSS Verifying DSS Analysis Security strength 	 Generating DSS(I) choose 160-bit prime q and 512-bit prime p = kq + 1 find g such that g^q = 1 mod p choose long term public/private key pair such that S < q and T = g^Smod p
<pre>Generating DSS(II) • choose per message public/private pair (T_m,S_m), S_m<q, t<sub="">m = ((g^{S_m} mod p) mod q) • find MD(m) = d_m • Signature X = S⁻¹_m(d_m+ ST_m) mod q • Transmit m, T_m, X</q,></pre>	Verifying DSS • find $X^{-1} \mod q$ • find d_m • calculate $x = d_m X^{-1} \mod q$ • calculate $y = T_m X^{-1} \mod q$ • calculate $z = (g^x T^y \mod p) \mod q$ • verified if $z = T_m$

DSS Analysis

• let $v = (d_m + ST_m)^{-1} \mod q$ • $X^{-1} = S_m (d_m + ST_m)^{-1} = S_m v \mod q$ • $x = d_m X^{-1} = d_m S_m v \mod q$ • $y = T_m S_m v \mod q$ • $z = g^{d_m S_m v} g^{ST_m S_m v} = g^{S_m} = T_m \mod p \mod q$ ($g^q = 1 \mod p$)

DSS Security Strength

- Private key S not divulged
- Attacker cannot sign without S
- Attacker cannot find new message to match signature
- Attacker cannot modify message and maintain valid signature

Zero Knowledge Proof Systems

- Used for authentication
- A proves to B that A has a secret without revealing that secret to B
- Most ZKF systems much faster than RSA
- Can be adapted for signatures

Square Root Method (I)

- Public key (n, v)
- n = p x q (p, q large primes)
- v is a number for which secret is $\sqrt{v} \mod n$
- v is found by choosing random s and calculating s²mod n
- A holds the public key (n, v) and will prove that A knows \sqrt{v}

Square Root Method (II)

- A selects k random numbers r_1 , r_2 ,... r_k and sends r_i^2 to B
- B chooses randomly subsets 1 and 2 of r_i^2
- A sends $sr_i \mod n$ for 1 and $r_i \mod n$ for 2
- B squares values and checks $vr_i^2 mod n$ and $r_i^2 mod n$
- Valid method because finding square roots mod n is as difficult as factoring n

Signatures by square root method

- Signature is zero knowledge proof with artificial challenge
- "Challenge" derived from digest of message to be signed
- Concatenate message with k $r_i^2 \mod n$
- Each bit of MD corresponds to a challenge
- Signature is k values of r_i and k responses to the challenge