AUTHENTICATION (II)

Authentication of People Security Handshakes

Authentication of People

- What you know Password
- What you have Authentication token
- What you are Biometrics

Passwords

- Vulnerable to dictionary attack
- Vulnerable to eavesdropping
- Typical password information is 2 bits per character
- Would need 32 characters to be ≡ 64-bit key
- Enforced password change has limited value

Protection against dictionary attack

- Efficient attack would hash complete dictionary and compare to contents of store of hashed passwords
- Protect by associating random number ("salt") with user
- Store hash (password salt)

Trojan Horse Password Attack	Protection against Trojan Horse
 Attacker leaves rogue program running on machine which displays login prompt When user name / password are entered program terminates (in a non-suspicious way) Valid user name / password pairs are collected 	 Design real login prompt with different protocol to general data input Design screen protocol to prevent login emulation Precede real login with program interrupt command (e.g. Ctrl – Alt – Del in Windows)
 Authentication Tokens Traditional keys easy to reproduce Magnetic stripe cards more information but easy to copy offline authentication by hash (key PIN) Smart cards difficult to copy 	Smart Cards • PIN protected memory card • Cryptographic challenge / response cards • Cryptographic calculators
 - difficult to copy - capable of security conversation with reader 	

Biometric Devices

- Retinal Scanner
- Fingerprints
- Face recognition
- Iris Scanner
- Handprints
- Voiceprints
- Keystroke timing
- Signatures

Issues with Biometric Devices

- User objections
- Probability false acceptance/false rejection
- False rejection may be reduced at expense of higher false acceptance

Security Handshakes

- Login
- Data Integrity/Encryption
- Mediated Authentication

Reflection Attack ľm A, R₂ True $\mathsf{R}_{1},\,f\,(\mathsf{K}_{AB}^{},\,\mathsf{R}_{2}^{})$ В handshake f (K_{AB}, R₁) ľm A, R₂ Attack R_1 , f(K_{AB} , R_2) С В first stage I'm A, R₁ Attack second stage c R_3 , f(K_{AB} , R_1) В

Protection against reflection attack

- A could authenticate B using a different shared key from which B authenticates A
- A could use a different type of challenge to that used by B (e.g. A could use even numbers and B could use odd)

Protection against password guessing

C could impersonate A and obtain an R , f (K_{AB} R) with which it could do a search to find K $\,$. Protection by adding extra message to handshake

Public Keys

 $f_{\mbox{A}}(.) \ \mbox{and} \ \ f_{\mbox{B}}(.) \ \ \mbox{are encryptions using public keys of A and B respectively}$

Timestamps

Integrity/Encryption of Data Shared secret 	Shared Secret for session key establishment • Form session key from K _{AB} and R
 Public keys 	• e.g. f (K _{AB} +1 R)
• One – way public key	• should not use f (K_{AB} R) or f (K_{AB} R + 1)
Public key exchange for session key establishment	One – Way Public key for Session Key Establishment
 A chooses random number and encrypts with B's public key – vulnerable to impersonation 	 A sends random number R encrypted under B's public key
 As above but signed with A's private key A and B both choose random numbers R₁ and R and exchange encrypted under 	 Diffie-Hellman key exchange signed in only one direction

- A and B both choose random numbers R₁ and R₂ and exchange encrypted under each other's public keys. Session key is R₁ + R₂
- Signed Diffie-Hellman key exchange

Mediated Authentication Needham-Schroeder

N 1, A requires secure communications with B KDC	
$E_{K_A}(N_1, B, K_{AB} \text{ ticket to } B)$ provides K_{AB}	
A ticket, E KAB(N2)	В
E κ _{AB} N2-1, N3)	
Е қ _{АВ} (N ₃ -1)	