STRONG PASSWORD PROTOCOLS

Lamport's Hash, EKE, SPEKE, PDM

LAMPORT'S HASH (I)

- Server B authenticates user A
- A has only a password and A's workstation has no private key
- Secure against eavesdropping and attacks on B's database

LAMPORT'S HASH (II)

- A chooses a password and a number n (≈ 1000)
- A computes hashⁿ (password)
- For each user B stores
 - username (transmitted by A)
 - integer n decremented after each authentication
 - hashⁿ (password)

LAMPORT'S HASH (III)

LAMPORT'S HASH (IV)

- May enhance with "salt"
- A chooses "salt" and sends to B together with n and hashⁿ (password salt)
- B sends (n, salt) to A on request
- Allows A to use same password on multiple servers
- Allows A to retain same password when n = 1

LAMPORT'S HASH - ISSUES

- Unless "salt" is used reinstall password when n = 1
- B is not authenticated by A
- Vulnerable to "small n attack"
- May employ without workstation software (i.e. user is provided with table of hashⁿ (password) and n)

Encrypted Key Exchange (EKE)

- · Uses weak secret derived from password
- Protects against dictionary attack
- Multiple incorrect guesses should raise alarm

EKE (II)

share weak secret W = f (password)

 Simple Password Exponential Key Exchange (SPEKE) Uses weak secret W in place of g in Diffie Hellman exchange in EKE Exchanges W^amod p and W^bmod p Agreed key is K = W^{ab}mod p 	Password Derived Moduli (PDM) • Modulus p = f (password) • g = 2 • Agreed key K = 2 ^{ab} mod p
Secure Remote Password (SRP) $ \begin{array}{c} $	 SRP Details A computes W from password B stores g ^Wmod p and associates with A g and p are fixed for the system a and b are chosen by A, B respectively challenges c₁ and c₂ are chosen by A, B respectively B additionally chooses a 32-bit number u SRP is documented in RFC 2945 and is common in IETF protocols