	Kerberos V4 and V5	
KERBEROS System Design in V4	 Designed at MIT based on work by Needham and Schroeder Private key system using KDCs V4 larger installed base, V5 greater functionality V4 works only on TCP/IP networks 	
 Key Distribution Centre (KDC) Runs on physically secure node Library of subroutines Database largely static Allows authorised users to access securely network resources Underlying network assumed insecure KDC subroutines called by TELNET (RFC 854), NFS (RFC 1094) and other 	 Terminology Network users and resources are <i>Principals</i> to the KDC KDC has <i>Master Key</i> for each <i>Principal</i> <i>Master Key</i> is derived from <i>Password</i> <i>Master Key</i> is used to distribute <i>Session Keys</i> 	

Obtaining a TGT (I)

- At login (username, password) A requests session key S_Afrom KDC
- S_Ahas limited lifetime (a few hours)
- KDC sends {S_A, TGT} encrypted under K_A
- TGT is {S_A , A, expiration time} encrypted under $K_{_{\mbox{KDC}}}$
- KDC "forgets" TGT, S_Aetc
- On receipt of S_A A "forgets" password

Obtaining a TGT (II)

Obtaining a ticket for remote login (I)

- A needs access to B
- A sends B, TGT to KDC with an authenticator
- Authenticator is timestamp encrypted under ${\bf S}_{\rm A}$
- KDC sends B, K_{AB} and ticket for B encrypted under S_A
- Authentication Server, Ticket Granting Server and KDC are same resource

Remote Login (I)

- A sends ticket to B with authenticator
- Authenticator is timestamp encrypted under $K_{\mbox{\tiny AB}}$
- B decrypts ticket to obtain ${\rm K}_{_{\rm AB}}$, decrypts authenticator and verifies timestamp
- B replies to A with an authenticator
- Authenticator is timestamp + 1 encrypted under K_{AB}

Remote Login (II)

В

[AP_REQ] ticket to B = $E_{K_B}(A, K_{AB})$ authenticator = $E_{K_{AB}}(timestamp)$

A's Workstation

> [AP_REP] E_{K_{AB}(timestamp + 1)}

Timestamps and authenticators

- Timestamps protect against replay
- Time skew maximum is 5 minutes
- Mutual authentication by adding 1 to timestamp
- Authenticator in request for ticket adds no security

KDC Configuration

- Database (principal, master key) encrypted under KDC master key
- Kerberos V4 uses DES (V5 supports other algorithms)

Replicated KDCs

- KDC single point of failure and potential performance bottleneck – replicate KDCs
- One KDC holds master copy
- Master KDC failure impacts only add/deletes
 and password changes
- Updating slave KDCs presents security issues
- Disclosure protected by KDC master key encryption and integrity by cryptographic hash of file

Realms and Names

- Universal KDC would require universal trust
- Each realm has own KDC database
- Principals have [Name, Instance, Realm]
- Instance is machine running named application
- For human users Instance could indicate role

Inter Realm Communications

В

	TGS_REQ (A@KDC1)	KDC1	
	credentials to KDC2	-	
4	TGS_REQ((A@KDC1, B@KDC	C2)	KDC2
•	credentials to B		_
	AP REQ		E

Key Version Numbers

- Master keys change with password
- Keys given version number
- All network resources must remember several versions
- Human users may need to use old password with slave KDCs immediately after logging change with master KDC

Encryption for privacy and integrity

- Standard method (not in V4) is CBC for encryption and CBC residue (with different key) for integrity
- Integrity alternative is to add redundant plaintext before encryption and check for match after decryption – most such schemes are flawed
- V4 uses plaintext CBC (PCBC) not totally secure

Plaintext Cipher Block Chaining (PCBC)

Encryption for Integrity

- V4 uses variation on checksum algorithm devised by Jueneman
- Checksum formed by hashing message S_A
- Details not published
- Not adopted in V5

Network Layer Addresses in Tickets

- When A requests a ticket for B, KDC adds A's network address to ticket
- B compares address in ticket to connect request
- Protects against impersonation
- Prevents delegation