Privacy Enhanced Mail (PEM) Secure Multipurpose Internet Mail Extensions (S/MIME)

General Principles

IETF Specs for PEM and S/MIME

- RFC 1421 PEM Message Format
- RFC 1422 PEM CA Hierarchy
- RFC 1423 Cryptographic Algorithms for PEM
- RFC 1424 Certificate and CRL Comms for PEM
- RFC 2045 MIME
- RFC 2633 S/MIME

PEM Overview (I)

- Assumes security only at source and destination – mail gateways must see "standard mail"
- Supports private and public key algorithms
- Standard practice is private key systems for encryption and public key systems for authentication and key management

PEM Overview (II)

- Supports RSA, DSS, DES, 3DES and AES
- Allows different parts of message different levels of security
- Each part has marker before and after (e.g. *begin privacy – enhanced message* and *end privacy – enhanced message*)

PEM Security Levels

- unsecured data
- integrity protected unmodified data (MIC-CLEAR) – assumes mail infrastructure will not alter message
- integrity protected encoded data (MIC-ONLY) encoding designed to prevent modification by mail infrastructure
- encoded encrypted integrity- protected data (ENCRYPTED) integrity – encrypt - encode

Establishing Encryption Keys

- Per-message encryption key randomly selected
- Encryption key encrypted under destination public key
- Destination public key provided with certificate and CA chain

PEM Certificates

- Based on X.500 names
- PEM Header contains certificates
- Hierarchical naming scheme A/B/C/D/E
 - A issues certificates for B
 - B issues certificates for C etc

• E.g. A = country = UK

- B = organisation type = academic
- C = university = Imperial
- D = department = EEE
- E = name = A.N. Other

PEM Certificate Hierarchy (I)

- Root CA is Internet Policy Registration Authority
- Operating under root CA are Policy Certification Authorities
- 3 levels of security policy
 - High Assurance
 - Discretionary Assurance
 - No Assurance

High Assurance

- Strong physical security for certificate production and tamper-resistance for private key used in certification
- Strict personnel security
- Will not grant certificates to organisations with lower levels of security

PEM Certificate Hierarchy

CA

NACA

CA

CA individual indviduals indviduals or CAs

CA

PCAs

various CAs

Discretionary and No Assurance

- Discretionary Assurance

 security management as for High Assurance
 no restriction on those to whom it grants certificates

 No Assurance

 issues certificates without any constraints

 Encryption
 - Randomly selected private key
 - CBC mode used with 64-bit Initialisation Vector (IV)
 - In PEM IV adds complexity to exhaustive key search on known plaintext

DACA

IPRA

CA

HACA individual CA individual individual

HACA

HACA

HACA

individual

Source Authentication and Integrity Protection

- Add Message Integrity Code (MIC)
- Initial message digest uses MD2 or MD5
- Message digest signed with private key of public key pair

S/MIME

- MIME is generally a multipart message
- application/pkcs7 signature holds detached signatures within a multipart signed structure
- application/pkcs7 mime allows a multipart signed message to be signed and encrypted

S/MIME Certificate Hierarchy

- S/MIME does not specify a particular PKI
- PKI options are
 - Public certifier in which a business issues certificates with various levels of cost/assurance
 - Organisational certifier (e.g. an employer)
 - Certificates from any CA