Imperial College

London MSc in Analogue & Digital IC Design

Clocked circuits, Shift Registers
& BCD converter

Peter Cheung
Department of Electrical & Electronic Engineering
Imperial College London

Course webpage: www.ee.ic.ac.uk/pcheung/teaching/MSc_Experiment/
E-mail: p.cheung@imperial.ac.uk

PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 1

Power of Verilog: Integer Arithmetic

+ Arithmetic operations make computation easy:

module add32(a, b, sum);
input[31:0] a,b;
output [31:0] sum;
assign sum = a + b;
endmodule

+ Here is a 32-bit adder with carry-in and carry-out:

module add32 carry(a, b, cin, sum, cout);
input [31:0] a,b;
input cin;
output [31:0] sum;
output cout;
assign {cout, sum} = a + b + cin;
endmodule

PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 2

I hope you have completed Part 1 of the Experiment. This lecture leads you to Part
2 of the experiment and hopefully helps you with your progress to Part 2. It covers
a number of topics:

How do we specify clocked (i.e. sequential) circuits in Verilog?

How do we specify a flexible counter?

How to specify and use shift registers?

How to specify linear-feedback shift registers as a pseudo random binary
sequence generator?

5. How to convert binary (or hexadecimal) numbers to binary coded decimal (BCD)
numbers?

Eall A o

Verilog is very much like C. However, the declaration of a, b and sum in the module
add32 specifies the data width (i.e. number of bits in each signal a, b or sum). This
is often known as a “vector” or a “bus”. Here the data width is 32-bit, and it is
ranging from bit 31 down to bit O (e.g. sum[31:0]).

You can refer to individual bits using the index value. For example, the least-
significant bit (LSB) of sum is sum[0] and the most-significant bit (MSB) is sum[31].
sum([7:0] refers the the least-significant byte of sum.

The ‘+’ operator can be used for signals of any width. Here a 32-bit add operation is
specified. sum is also 32-bit in width. However, if a and b are 32-bit wide, the sum
result could be 33-bit (including the carry out). Therefore this operation could result
in a wrong answer due to overflow into the carry bit. The 33th bit is truncated.

The second example module add32_carry shows the same adder but with carry
input and carry output. Note the LHS of the assign statement. The {cout, sum}is a
concatenation operator — the contents inside the brackets { } are concatenated
together, with cout is assigned the MSB of the 33th bit of the result, and the
remaining bits are formed by sum[31:0].

Different types of Boolean Operators

+ Bitwise operators: perform bit-sliced operations on vectors bit by bit
O ~(4’b0101) = {~0,~1,~0,~1} = 4'b1010
0 4’b0101 & 4’b0011 = 4’b0001
¢ Logical operators: return true or false (1-bit) results
O !(4’b0101) =~1=1'b0
¢ Reduction operators: act on each bit of a SINGLE input vector
O &(4’'b0101)=0&1&0&1=1hb0

Bitwise Logical Reduction
~a | NOT la | NOT & | AND
a&b | AND a&&b | AND ~& | NAND
alb OR allb | OR | OR
a’“b | XOR ~ NOR
a~Ab | XNOR| Note distinction between ~a and !a A XOR
PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 3

There are three different types of Boolean operators:

Bitwise operators perform what you would expect as if there are parallel gates used
for each bit of the operands. Therefore a&b means that each bit fromaand b is
passed through an AND-gate.

Logical operators only result in 0 or 1 (i.e. 1-bit result) In this example !a (not a)
where a = 0101, will result in first, a being evaluated as a logical value (i.e. logical ‘1’
or true). Therefore the result ~ais logical O (or false).

Reduction operators is applied to a single operand (and sometimes known as unary
operators). It performs the operation one-bit at a time to the operand.

Incomplete specification:
adds unwanted latch circuit

if out is not assigned 3 T
during any pass through Synthesized Circuit .
the always block, then the
previous value must be

retained! a —oo
b -
module maybe mux 3tol(a, b, ¢, o1 o a out
- N sel, out); ¢ 10 G
input [1:0] sel;
input a,b,c; 2
output out; sel
reg out;
sel[1]
always @(a or b or c or sel) sel[0]
begin
case (sel)
2'b00: out = a; ¢ When sel = 2'b11, G = 0, therefore the
2'b01: out = b; latch stores the previous output value as
2'bl0: out = c; required by Verilog in this situation.
endcase
end
endmodule
PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 4

The consequence of this is an unexpected extra latch being added to the hardware.
In order to cope with the unspecified condition of sel = 2’b11, the output of the
MUX is fed to be latch.

Noted that a latch is level-triggered; a flipflop is edge-triggered. A latch has the
property that when the gate input G is high, Q = D (i.e. it is transparent: input goes
straight to output). If G is low, the latch become opaque, meaning that it retains the
previous value.

The green shaded latch in the diagram and the controlling NAND gate are the
unintended consequences of this incompletely specified 3-to-1 multiplexer.

Always avoid incomplete specification

+ Solution 1: Precede all conditionals + Solution 2: Fully specify all branches of
with a default assignment for all if-else construct, or include a default
signals: statement in case construct:

always @(a or b or ¢ or sel) always @(a or b or ¢ or sel)
begin begin
out = 1’'bx; case (sel)
case (sel) 2'b00: out = a;
2'b00: out = a; 2'b01l: out = b;
2'b01l: out = b; 2'bl0: out = c;
2'b10: out = ¢; default: out = 1’bx;
endcase endcase
end end
endmodule endmodule
PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 5

How to specify a sequential circuit?

+ Edge-triggered flipflop is specified with:

Combinational cct

module combinational(a, b, sel,

always @ (posedge clk):

Sequential cct

module sequential(a, b, sel,

out) ; clk, out);
input a, b; input a, b;
input sel; input sel, clk;
output out; output out;
reg out; reg out;
always @ (a or b or sel) glwzys @ (posedge clk)
begin egin
if (sel) out <= a;
if (sel) out = a;
1 t b; else out <= b;
else out = b; end
end
endmodule
endmodule a
out D Q- out
b b
|-'>
sel sel clk
PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 6

There are two solutions to avoid the unintended latch being added.

Solution 1 is to put outside the case statement a “default” value for out. Here 1’bx
(i.e. ‘x’) means undefined.

Solution 2 is better: inside the case statement block, always add the default line.
This will catch ALL the unspecified cases and avoid the introduction of the spurious
unintended latches.

Lesson: always include a default assignment in any case statement to capture
unintended incomplete specification.

We have previously seen the 2-to-1 MUX being specified as combinational circuit in
Verilog using the always construct with the sensitivity list.

The right hand diagram shows how a clocked sequential circuit is being specified
using always block, but with a sensitivity list that includes the keyword posedge (or
negedge). Note that the clocking signal clk is an arbitrary name — you could call it

“fred” or anything else!

The sensitivity list NO LONGER contains the input signals a, b or sel. Instead the
hardware is specified to be sensitive the positive edge of clk. When this happens,
the output changes according to the specification inside the always block.

Two assignments (“=“ and “<=") are shown here. | will explain the difference

between these later.

Synchronous clear in D-flipflop

¢ posedge and negedge makes an always block sequential and edge-triggered
+ Sensitivity list in a sequential always block determines what circuit is synthesized

| D flipflop with synchronous clear

module dff sync_clear(d, clearb,

clock, q); clk

input d, clearb, clock;

output q; d

reg q; —)
always @ (posedge clock)

begin clearb

if (!clearb) q <= 1'bO;

else q <= d; ’_I—I‘
end a

endmodule

+ve edge on clock triggers action in
always block

+ Beware of race condition if you have two or more always blocks — they execute in
parallel!

PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 7

Blocking vs Non-blocking Assignments

Verilog has two different types of assignments: blocking & nonblocking.

Blocking assignments = are executed in the order they appear, therefore they are done
one after another. Therefore the first statement “blocks” the second until it is done,
hence it is called blocking assignments.

always @ (a or b or c) .
= b . blockin
a = b; blocking begin
b = a; x=a | b; 1. Evaluate a | b, assign result to x
// both a & b =b y=a”*“b"*c; 2. Evaluate a*b”c, assign resultto y
z =Db & ~C; 3. Evaluate b&(~c), assign result to z
end

+ Non-blocking assignments <= are executed in parallel. Therefore an earlier statement
does not block the later statement. Note the subtle effect this has within always block:

Therefore in Verilog, you specify flipflops using always block in conjunction with the
keyword posedge or negedge.

Here is a specification for a D-flipflop with synchronous clear which is low active (i.e.
clear the FF when clearb is low).

You may have more than one always block in a module. But if this is the case,
beware that the two always blocks will execute in parallel. Therefore they must
NOT specify the same output, otherwise a race condition exists and the result is
unpredictable.

M . DeosBEUEESEEm || 21ways @ (a or b or c)
a <= b; RN begin Non-blocking
b <= a; a | b; 1. Evaluate a | b but defer assignment of x
// swap a and b a*“b”*c; 2. Evaluate a*b”c but defer assignment of y
b & ~c; 3. Evaluate b&(~c) but defer assignment of z
end
PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 8

In Verilog ‘=* is known as blocking assignment. They are executed in the order they
appear within the Verilog simulation environment. So the first ‘=* assignment blocks
the second one. This is very much like what happens in C codes.

In the top left example, both a and b eventually have the value b.

In the top right example, each statement is evaluated in turn and assignment is
performed immediately at the end of the statement.

Non-block assignment is ‘<=’, and statements with this assignments are executed in
parallel (i.e. order do not matter).

In the bottom left example, a and b are swapped over because you can view that
the two assignments happen at the same time.

In the bottom right example, three evaluations are made, and the assignment to x, y
and z happens at the same time on exiting from the always block.

Be careful to use the correct assignment

+ Here are two versions of a 3-stage shift q1 q2
register consisting of 3 flipflops using in—D Q D Q D Qf—out
blocking and nonblocking assignments. S o S

+ Will they give the same results? ik r I_ r

module blocking(in, clk, out);
input in, clk;

output out; module nonblocking(in, clk, out);
reg ql, g2, out; input in, clk;
always @ (posedge clk) output out;
begin reg ql, g2, out;
ql = in; always @ (posedge clk)
q2 = ql; begin
out = q2; ql <= in;
end q2 <= ql;
endmodule out <= q2;
end
endmodule
PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 9

Understanding the difference between ‘=* and ‘<=’ is important. Suppose we want
to specify a three-stage shift register (i.e. three D-FF in series as shown in the
schematic).

Here are two possible specification. Which one do you think will create the correct
circuit and which one is wrong?

Use NONBLOCKING assignment for sequential logic

always @ (posedge clk)
begin

ql = in;

g2 = ql;

out = g2;
end

+ At each rising clock edge:
q1=in,
then g2 = q1 =in,
then, out=q2=q1 =in.
¢ Therefore out = in, which is NOT the
intention.

always @ (posedge clk)
begin

ql <= in;

q2 <= ql;

out <= q2;
end

¢ Ateach rising clock edge, q7, g2 and

out simultaneously receive the old
values of in, g1, g2 respectively.

. }é q1 q2
in —— |———— out
-
clk _r

clk |_

in—D QD Q=D Q}— out

v
_I

v
ﬁ

A4

PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 10

The left hand specification is wrong. Since the three assignments are performed in
sequence, out = g2 = q1 = in. Therefore the resultant circuit is ONE D-flipflop.

The right hand side is correct. q1, g2 and out are updated simultaneously on exit
from the always block. Therefore their “original” values MUST be retained. Hence
this will result in three D-flipflops being synthesised (i.e. created).

In general, you should always use ‘<=’ inside an always block to specify your circuit.

10

A larger example — 32-bit ALU in Verilog

+ Here is an 32-bit ALU with 5 simple instructions: 2-to-1 MUX
A[31:0] B[31:0] module mux32two (10,11, sel,out);
input [31:0] 10,41;

input sel;
output [31:0] out;

assign out = sel ? i1 : 10;

endmodule

3-to-1 MUX

module mux32three(10,11,12,sel,0ut);
input [31:0] 10,11,12;

input [1:0] sel;
output [31:0] out;
reg [31:0] out;

- F[2:0]

F2 F1 FO | Function always @ (10 or 11 or 12 or sel)
R[31:0] begin (se1)
case (se
000 A+B 2'b00: out = 10;
001 A+1 2’b01: out = i1;
010 A-B 2’b10: out = 12;
default: out = 32'bx;

011 A-1 endcase
10X A*B end

endmodule

PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 11

The arithmetic modules

¢ Here is an 32-bit ALU with 5 simple instructions: module mullé (10,11,prod);

A[31:0] B[31:0] input [15:0) 10,11;
output [31:0] prod;

// this is a magnitude multiplier
// signed arithmetic later
assign prod = 10 * i1;

endmodule

- F[2:0]

module sub32(10,11,diff);
e | input [31:0] 10,11;
output [31:0] diff;

assign diff = 10 - 1i1;

module add32(i0,11,sum); endmodule
input [31:0] 10,11;
output [31:0] sum;

assign sum = 10 + 11;

endmodule

PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 12

Now let us put all you have learned together in specifying (or designing) a 32-bit ALU
in Verilog.

There are five operators in this ALU. We assume that there are three arithmetic
blocks, and three multiplexers (two 2-to-1 MUX and one 3-to-1 MUX).

1

Each hardware block is defined as a Verilog module. So we have the following
modules:

mux32two — a 32-bit multiplexer that has TWO inputs

mux32three — a 32-bit multiplexer that has THREE inputs

mull6 — a 16-by-16 binary multiplier that produces a 32-bit product

add32 — a 32-bit binary adder

sub32 — a 32-bit binary subtractor

12

Top-level module — putting them together

¢ Given submodules: [module mux32two(10,11,sel,0ut) ;

B[31:0]
|

alu

module mux32three(10,11,12,sel,out);
module add32(10,11,sum);
module sub32(10,11,diff);
module mullé(10,11,prod) ;

module alu(a, b, £, r);
input ([31:0] a, b;
input [2:0] £;

output [31:0] r;

wire [31:0] addmux out, submux out; \-l —

output nodes o

wire [31:0] add out, sub_out, mul_out;

mux32two adder mux(b, 32'dl, f£([0], addmux_out);
mux32two sub mux(b, 32'dl, £[0], submux out);

adds2 our_adder (a, addmux out, add out):;
sub32 our_subtracter (a, submux _out, sub_out);
mullé our multiplier(a[15:0], b[15:0], mul out);

mux32three output_mux(add_out, sub_out, mul_out, £([2:1], r);

dmodule

names | | instance wires/regs in
names module alu

PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design

Lecture 2 Slide 13

A Flexible Timer — clktick.v

+ Instead of having a counter that count 16 ktick
events, we often want a counter to provide N - clKlc!
a measure of time. We call this a timer. enable

+ Here is a useful timer component that use
a clock reference, and produces a pulse
lasting for one cycle pulse every N+1
clock cycles. (1T R S R R A e

+ If“enable” is low (not enabled), the clkin count [N Inalnz2]l ilol]

pulses will be ignored. tick 1 1

module clktick (

clkin, // Clock input to the design

enable, // enable clk divider

N, // Clock division factor is N+1

tick // pulse_out goes high for one cycle (n+1) clock cycles
'H /. end of port Tist

tick

clkin

parameter N_BIT = 16;
————————————— INPUT POFtS--———--————————————————————
[input clkin;
input enable;
input [N_BIT-1:0] N;

PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 14

Now let us put all these together.

Note that mxu32two is being used twice and therefore this is instantiated two

times with two different instance names: adder_mux and sub_mux.

Connections between modules are implicit through the use of signal names. For
example, the 16-bit inputs to the multiplier are taken from the lower 16-bits of a

and b inputs (i.e. a[15:0] and b[15:0]).

13

Counters are good in counting events (e.g. clock cycles). We can also use counters
to provide some form of time measurement.

Here is a useful component which | can a clock tick circuit. We are not interested in
the actual count value. What is needed, however, is that the circuit generates a
single clock pulse (i.e. lasting for one clock period) for every N+1 rising edge of the
clock input signal clkin.

We also add an enable signal, which must be set to ‘1’ in order to enable the internal
counting circuit.

Shown below is the module interface for this circuit in Verilog.

Note that the parameter keyword is used to define the number of bits of the
internal counter (or the count value N). This makes the module easily adaptable to
different size of counter.

14

clktick.v explained

+ ‘“count”is an internal N_BIT counter.

+ We use this as a down (instead of up) cliin L
counter. count [N [Nt [N2 [----]

+ The counter value goes fromNto 0, hence tick _ [~ | [|

there are N+1 clock cycles for each tick

pulse.
[/ output Ports Data Type---------—---------
output port_can be a storage element (reg) or a wire
reg [N_BIT-1:0] count;
reg tick;
initial tick = 1'b0;
e Main Body of the module -------------————-
a1wa¥s @ (gosedge clkin)
if (enable == 1'bl
if (count == 0) begin
tick <= 1'bl;
count <= N;
en
else begin
tick <= 1'b0;
count <= count - 1'bl;
en
endmodule end of Module clkticl
PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 15

The actual Verilog specification for this module is shown here.

There has to be an internal counter count whose output is NOT visible external to
this module. This is created with the reg [N_BIT-1:0] count; statement.

The output tick has to be declared as reg here because its value is updated inside
the always block.

Also note that instead of adding ‘1’ on each positive edge of the clock, this design
uses a down counter. The counter counts from N to 0 (hence N+1 clock cycles).
When that happens, it is reset to N and the tick output is high for the next clock
cycle.

15

Cascading counters

+ By connecting clktick module in series with a counter module, we can produce a
counter that counts the number of millisecond elapsed as shown below.

16'd49999 ,16& clktick counter
16
b1 —{1EN tick 1EN CT j—— Elapsed time (in ms)
50MHz C1/- C1/+
1R
reset |
LYo O A I A A R A A B |
tick [] _ [-
1ms
CT | count I count + 1 [counter + 2
PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 16

Using this style of designing a clock tick circuit allows us to easily connect multiple
counters in series as shown here.

The clktick module is producing a pulse on the tick output every 50,000 cycles of the
50MHz clock. Therefore tick goes high for 20 microsecond once every 1 msec (or
1KHz).

The clktick module is sometimes called a prescaler circuit. It prescale the input
clock signal (50MHz) in order for the second counter to count at a lower frequency
(i.e. 1KHz).

The second counter is now counting the number of millisecond that has been
elapsed since the last time reset 1R goes high.

The design of this circuit is left as a tutorial problem for you to do.

16

A clock divider

+ Another useful module is a clock divider circuit. 16| clkdi
. . K et v
+ This produces a symmetrical clock output,
dividing the input clock frequency by a factor of enable 1EN clkout
2%(K+1). clkin cl-
L T |
count [N [ntln2l---L1 [o [n]
clkout _ |
module clkdiv (
clkin, // clock input signa] to be divided
enable, // enable clk divider when high
K, // clock frequency divider is 2%(K+1)
clkout // symmetric clock output Fout = Fin / 2%(K+1)
); // end of port Tist
parameter K_BIT = 16; // change this for different number of bits divider
[——————m—————e INPUL POrtS———————————————————————— e
input clkin;
input enable;
input [K_BIT-1:0] K;
[OUTPUL POrtS-———————=—=——————————— -
output clkout;
PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 17

Here is yet another useful form of a counter. | call this a clock divider. Unlike the
clktick module, which produces a one cycle tick signal every N+1 cycle of the clock,
this produces a symmetric clock output clkout at a frequency that is 2*(K+1) lower
than the input clock frequency. Shown here is the module interface in Verilog.
Again we have used the parameter statement to make this design ease of
modification for different internal counter size.

17

clkdiv.v explained

18 clkdi
K == oy akin T 1 1t 111

clkout count [N [naln2l----[1 [o[n]

C1- clkout _ |

enable 1EN

clkin

------------- Output POrts Data Type-------------==---
output port_can be a storage element (reg) or a wire

reg [K_BIT-1:0] count;

reg clkout;

initial clkout = 1'b0;
———————————— Main Body of the module ---------cecmmmmmmmeo

a1wa¥s @ (posedge clkin)
if (enable == 1'b1)

if (count == 10°'b0) begin
clkout <= ~clkout;) toggle the clock output signal
count <= K; shift right one bit
end

else
count <= count - 1'bl;

endmodule end of Module clkdiv
PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 18

The Verilog specification is similar to that for clktick. This also has an internal
counter that counts from K to 0, then the output clkout is toggled whenever the
count value reaches 0.

18

Shift Register specification in Verilog

C1/9 C1/2 C1/9 C1/o
data_in 1D data_in,)))))) data_out
‘rD | ||D ‘ ||D ‘f ||D ’7\
sreg[4]

sreg[1] sreg[2] sreg(3]

data_out

moduTe sregd (data_out, data_in, clk);

1
output data_out; serial data output
input data_in;’ serial data input clk C1/2
input clk; clock input
1D

. . data_in
re [4:1] sreg; 4 stage D-FF for this shift
initial sreg = 1 'bo; sreg[1]
lways @ (pasedge clk) sreg[2)
begin ‘ sreq(3] data_out
sreg[4] <= sreg[3];
sreg[3] <= sreg[2];
sreg[2] <= sreg[1];
sreg[1] <= data_in; N
end sreg <= {sreg[3:1],data_in};
wire data_out;
assign data_out = sreg[4];
endmodule
PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 19

Linear Feedback Shift Register (LFSR)
CM_E_’J L_Ej LE\J | | Primitive polynomial: 1 + X3 + X*
ci/> cid c1/3 C1/9
Q1 Q2 Q3 Q4
1D I IlD ‘ I|D l I|D
Q4 Q3 Q2 Q1 count
0 0 0 1 1
XOR 0 0 1 0 2
0 1 0 0 4
+ Assuming that the initial value is 4'b0001. 1 0 0 1 9
« This shift register counts through the sequence as 0 0 1 1 3
shown in the table here. (1’ i é ‘1’ 163
This is now acting as a 4-bit counter, whose count n o 1 o m
value appears somewhat random. 0 1 0 1 S
+ This type of shift register circuit is called “Linear 1) 1 1 1
Feedback Shift Register” or LFSR. 0 1 1 1 7
¢ Its value is sort of random, but repeat very N-1 1 1 1 1 15
cycles (where N = no of bits). 1 1 1 0 14
¢ The “taps” from the shift register feeding the XOR 1 1 0 0 12
gate(s) is defined by a polynomial as shown 1 0 0 0 8
above. 0 0 0 1 1
PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 20

To specify a shift register in Verilog, use the code shown here (in blue box). We use
<= assignment to make sure that sreg[4:1] are updated only at the end of the always
block.
On the right is a short-hand version of the four assignment statements:

sreg <= {sreg[3:1], data_in}

This way of specifying the input to the assignment is powerful. We use the

concatenation operation { } to make up four bits from sreg[3:0] and data_in (with
data_in being the LSB) and assign it to sreg[4:1].

19

We can also make a shift register count in binary, but in an interesting sequence.
Consider the above circuit with an initial state of the shift register set to 4’b0001.
The sequence that this circuit goes through is shown in the table here. It is NOT
counting binary. Instead it is counting in a sequence that is sort of random. This is
often called a pseudo random binary sequence (or counter).

The shift register connect this way is also known as a “Linear Feedback Shift
Register” or LFSR. There is a whole area of mathematics devoted to this type of
computation, known as “finite fields” which we will not consider on this course.
The circuit shown below is effective implementing a sequence defined by a
polynomial shown: 1 + X3 + X4, The term “1” specifies the input to the left-most D-
FF. This signal is derived as an XOR function (which is the finite field ‘+’) of two
signals “tapped” from stage 3 (i.e. X3) and stage 4 (i.e. X*) of the shift register.

For a m stage LFSR, where m m
mis an integer, one CO_UId 3 1+ X+X° 14 14X+ X5+ X104 x14
always find a polynomial 4 L+ X+X 15 1+X+X15
(i.e. tap configuration) 5 1+ X2+ X° 16 1+ X+ X3+ X124 X
that will provide maximal 6 LAy X 17 1 +¥1*\:3

R 7 1+X+X 18 1+X'+X
length. This means that 8 1+ X2+ X+ X+ X8 19 1+ X+ X2+ X+ X¥°
the sequence will only 9 1+ X+ X° 20 1+ X+ X>
repeat after 2™-1 cycles. 10 L+X2+X10 21 L+ X2+ X2
Such a polynomial is 11 1+ X2+ X1 22 L+ X+ X%

PR 12 L+ X+ X+ X° + X2 23 1+ X5+ X2

known as a “primitive 13 L+ X+ X+ X+ X2 24 1+ X+ X2+ X + X%
polynomial”.

The table here shows some of the popular primitive polynomials for different value of m.

Since the output of such a counter is peudorandom, it is a commonly used circuit to produce
random binary sequence for different applications. 20

Isfrd.v

C1/9
1D

w m m | [Primitive polynomial: 1 + X3 + X
C1/2 C1/9 C1/9
Q1 Q2 Q3 Q4

1D ‘

]

XOR

i

output [4:1]
input

reg [4:1]

initial sreg

always @ (posedge clk)
sreg <= {sreg[3:1], sreg[4] A sreg[3]}

assi?n data_out = sreg;
endmoduTe

moduTe Tfsr4 (data_out, clk);

data_out; // four bit random output

clk; // clock input
sreg; / 4 stage D-FF for this shift register
=4"'bl;

PYKC 19 Oct 2017

MSc Lab ~ Mastering Digital Design Lecture 2 Slide 21

Here is the Verilog specification for a 4-bit LFSR.

21

Displaying a binary number as decimal

In[3..0] =

T

7seg
decoder

out[6..0]
E—

+ As the part 1 of the Lab Experiment VERI, you will be implementing the 7 segment
decoder we designed in the last lecture. This will show every four binary bits as a

hexadecimal digit on the display.

+ Hex numbers are difficult to interpret. Often we would like to see the binary value

displayed as decimal. For that we need to design a combinational circuit to

converter from binary to binary-coded decimal. For example, the value 8'hff or

8'b11111111 is converted to 8'd255 in decimal.

PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design

Lecture 2 Slide 22

We now take another example of a relative complex combinational circuit, and see

how we can specify our design in Verilog.

The goal is to design a circuit that converts an 8-bit binary number into three x 4-bit

binary coded decimal values (i.e. 12 bit).

There is a well-known algorithm called “shift-and-add-3” algorithm to do this
conversion. For example, if we take 8-bit hexadecimal number 8'hff (i.e. all 1’s), it
has two hex digits. Once converted to binary coded decimal (BCD) it becomes 255

(3 BCD digits).

22

Shift and Add 3 algorithm [1] — shifting operation

+ Let us consider converting hexadecimal number 8'h7c (which is decimal 8'd124)
+ Shift the 8-bit binary number left by 1 bit = multiply number by 2
+ Shifting the number left 8 times = multiply number by 28
+ Now truncate the number by dropping the bottom 8 bits = divide number by 28
+ So far we have done nothing to the number — it has the same value
+ The idea is that, as we shift the number left into the BCD digit “bins”, we make the
necessary conversion to the hex number so that it confirms to the BCD rule (i.e.
falls within 0 to 9. instead of 0 to 15)
8-bit binary
Original binary number | 0111 I 1100 |

Shift left 8 times I

(same a5 muliply by 20 |0111|11oo||0000|0000|

Truncate the lower 8 bits I

(same as divide by 2°) I 0111 I 1100 I

PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 23

Shift and Add 3 algorithm [2] — shift left with problem

+ If we take the original 8-bit binary number and shift this three times into the BCD
digit positions. After 3 shifts we are still OK, because the ones digit has a value of
3 (which is OK as a BCD digit).

+ If we shift again (4t time), the digit now has a value of 7. This is still OK. However,
no matter what the next bit it, another shift will make this digit illegal (either as
hexadecimal “e” or “f", both not BCD).

+ Inour case, this will be a “f"!

MEN L S s

Original binary number | | | o111 [1100]
Hroprasien |]] o] 1111]1000]

Momasen | I [os] 1111 0000]

i | | | o11] 11100000

Hroosien |] [oii1] 1100]0000]

g | I l1111 | 1000 0000]

PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 24

Before we examine this algorithm in detail, let us consider the arithmetic operation
of shifting left by one bit. This is the same as a x 2 operation.

If we do it 8 times, then we have multiplied the original number by 256 or 28,

Now if you ignore the bottom 8-bit through a truncation process, you effectively
divide the number by 256. In other words, we get back to the original number in
binary (or in hexadecimal).

23

Our conversion algorithms works by shift the number left 8 times, but each time
make an adjustment (or correction) if it is NOT a valid BCD digit.

Let us consider this example. We can shift the number four time left, and it will give
a valid BCD digit of 7.

However, if we shift left again, then 7 becomes hex F, which is NOT valid. Therefore

the algorithm demands that 3 is added to 7 (7 is larger or equal to 5) before we do
the shift.

24

Shift and Add 3 algorithm [3] — shift and adjust

+ So on the fourth shift, we detect that the value is > or = 5, then we adjust this
number by adding 3 before the next shift.

+ In that way, after the shift, we move a 1 into the tens BCD digit as shown here.

Hundreth Tens Ones o hs
BCD BCD BCD 8-bit binary

] o121 1100

Original binary number I

0] 1111 1000 |

]]
Shift left 1 bit I l l
]]

~no problem
Momatem | 01| 11110000 |
i | | [o:1] 1110 0000 |
A | | [o11:1] 1200 0000]
e e || | [1010] 2000 [0000]
e add beforeshit |] 1] 0101 11000000 |
PYKC 19 Oct 2017 MSc Lab — Mastering Digital Design Lecture 2 Siide 25

The rationale of this algorithm is the following. If the number is 5 or larger, after
shift left, we will get 10 or larger, which cannot fit into a BCD digit. Therefore if the
number 5 (or larger) we add 3 to it (after shifting is adding 6), which measure we
carry forward a 1 to the next BCD digit.

25

Shift and Add 3 algorithm [4] — full conversion

+ In summary, the basic idea is to shift the binary number left, one bit at a time, into
locations reserved for the BCD results.

+ Let us take the example of the binary number 8'h7C. This is being shifted into a
12-bit/3 digital BCD result of 12'd124 as shown below.

Hundreth Tens Ones o1y
BCD BCD BCD 8bit binary

Original binary number | I I I 0111 1100

Shift left three times
no adjust 011 | 1110]0 |
Oness’:‘if?‘,lezf; 0111 ‘ 1100 ‘ ‘
Add 3 1010 \1100[J
onees o101] 100 | |
Add 3 1] 1000] 100 | |

Shift left 2 times
Tens =6, 35 110foo010] o [}
Add3 1001f o010 o | ‘
B(Dvalueiss’t]::rls:: 1J0010j0100 ‘ ‘ ‘

PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 26

To recap: the basic idea is to shift the binary number left, one bit at a time,
into locations reserved for the BCD results. Let us take the example of the
binary number 8’h7C. This is being shifted into a 12-bit/3 digital BCD result
as shown above.

After 8 shift operations, the three BCD digits contain respectively: hundredth
digit = 4’b0001, tens digit = 4’b0010 and ones digit = 4'b0100, thus
representing the BCD value of 124.

The key idea behind the algorithm can be understood as follow (see the
diagram in the slide):

1.Each time the number is shifted left, it is multiplied by 2 as it is shifted to
the BCD locations;

2.The values in the BCD digits are the same as as binary if its value is 9 or
lower. However if it is 10 or above it is not correct because for BCD, this
should carry over to the next digit. A correction must be made by adding 6 to
this digit value.

3.The easiest way to do this is to detect if the value in the BCD digit locations
are 5 or above BEFORE the shift (i.e. X2). If it is 25, then add 3 to the value
(i.e. adjust by +6 after the shift).

26

Hardware implementation (1) — binary to BCD

+ The hardware to perform binary to BCD conversion is shown below.
Shifting is easy — just wiring all signals one position to the left.

+ For each of the BCD locations, we need an “adjust” module which perform the
follow operation: if the value is 25, then add 3.

Hundreth Tens Ones .
BCD BCD BCD 8-bit binary

| | | | [|
ik il

adiust adust Adiust [NI

K ey ¥y vy v

*

Adjust Adjust Adjust

PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 27

In order to understand how to we may implement this converter in hardware,
you have to understand that shifting in hardware is easy. You just need to
connect signals with one bit shift to the left. It DOES NOT need any gates, just
wires!

Now we also need to do the adjust module, which simply performs the
operation:

if (in>=5) out=in+3 else out=in

The easiest way to implement such a module is to use a case statement. This
is set as a tutorial problem in Problem Sheet 1.

27

Hardware implementation (2) — array of gates

+ Here is the full array of logic 00000000 00O0]| 874 8[3:0]
gates to do the conversion. ¥

+ After 8 shift and adjustment on ”
the way, the result should be

[aosust |

three BCD digits. 1 I
+ Each ADJUST block perform]) 1
the following operation: | H
- AR A]
if (input >= 5) | I
output = input + 3 J I
else | | I
output = input | JJ 1]
(A J||
n JdJ
|
devedes
BCD[2] BCD[1) BCD[0)
PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 28

The entire full array is shown here. The shade module is the adjust module (which
we call: add3_ge5).

As | said in the last slide, the easiest way to implement (specify) add3_ge5 is using a
case statement.

The BLUE signal path traces what happens to the least significant bit of the original
number.

28

Hardware implementation (3) — propagate 0 to simplify

+ If we now propagate forward all 00000000000]| sma B[3:0]
the Os, we can eliminate all
ADJUST modules except those X = x| | I
in RED. FJ
+ All the others are just wires
from input to output because 28 X x || | |
the input values are ¢J 2 72
GUARANTEED to be smaller Cx | X | | | |
than 5. ;] r
X X (NN
X X | | JI
2
X |
X |
i
I BCD[2) I BCD[1] BCD[0]
PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 29

The full array is more complicated than need be. If we propagate the ‘0’s forward in
the array of gates, you will find those marked with ‘X’ will always have its input less
than 5. In which, output = input in these modules. THIS IS JUST A SET OF FOUR
WIRES.

The only remaining add3_ge5 modules are those shaped in orange.

29

Putting things together

+ Once you have specified the adjust module (A,) in Verilog, you can wire up the
entire converter as shown here:

B7 B6 BS5 B4 B3 B2 Bl BO

Al w, [3:0]

A2 IR R

0
I a,[3:0]
| A4 | A5 |
l [
o o | A6 [A7 |
v I IR EER
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 DO
PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 30

After simplification, here are ALL the remaining add3_ge5 modules for the 8-bit
binary to BCD conversion (bin2bcd8). | have labeled the input ports to add3_ge3
wn[3:0] and the output parts an[3:0] where nis 1to 7.

30

Binary to BCD conversion in Verilog

+ Here is the Verilog code to perform the 8-bit binary to BCD conversion:
module bin2bcd8 (8, BCD_O, BCD_1, BCD_2);

B; binary input number Wn[30]
BCD_O, BCD_1, BCD_2; BCD digit LSD to MSD ‘ ‘ i ‘

input [7
output [3:

wire { :w] wl,w2,w3,wd ,w5,w6,w7;
wire ¢

:0] a1,a2,a3,ad,as,a6,a7; “
Instantiate a tree of add3-if-greater than or equal to 5 cells
P

and output is a_n
Sges A O
add3_ge5 A2 (w2,a2); .
26037063 A3 (w3233} a,[3:0]
add3_ge5 A4 ;

add3_ge5 AS

add3_ge5 A6

add3_ge5 A7 (w7,a7);

wire the tree of add3 modules together
assign wl = {1'b0, B[7:5]}; wn is the input port to module An
assign w2 = al[, B[4
assign w3 = {a2 , BL3
assign w4 = {1'b0, a1(3], a2(3], a3[3]};
assign w5 = 2:0], 8l21};
assign w6 = , as[3]h
assign w7 = :0], s[11};
connect uj ur BCD digit outputs
assign BCD_O = 2:0],8[(]?:
assign BCD_1 = {a6é 0],a7(31};
assign BCD_2 = {2'b0,a4[3],a6[2]};
endmodule
PYKC 19 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 2 Slide 31

Assuming that we have designed a module “add3_ge5” to perform the adjustment
as required, the converter can be implemented in Verilog by simply “WIRING UP”
the various modules together.

The interconnections are specified in the wire statements.

The next block is instantiating 7 add3_ge5 modules.

The next block of code is to wire the modules together.

Finally the last statements are to connect up the signals from the modules to the
output ports.

31

