Imperial College

London MSc in Analogue & Digital IC Design

Pulse-width Modulator,
Finite State Machines &
Serial-Peripheral Interface

Peter Cheung
Department of Electrical & Electronic Engineering
Imperial College London

Course webpage: www.ee.ic.ac.uk/pcheung/teaching/MSc_Experiment/
E-mail: p.cheung@imperial.ac.uk

PYKC 26 Oct 2017 MSc Lab — Mastering Digital Design Lecture 3 Slide 1

| hope you have completed Part 2 of the Experiment and is ready for Part 3.

In part 3, you are going to use the FPGA to interface with the external world through
a DAC and a ADC on the add-on card. You will also learn about FSM design and
PWM module. Finally the DAC and ADC use a serial interface known as SPI. We will
take a brief look at this interface standard without going into details of how to write
Verilog to specify the SPI module design.




Lecture Objectives

¢ PWM module and how it works
¢ Basic about Finite State Machine (FSM)

¢ How to specify a FSM in Verilog

¢ The analogue interface add-on card

¢ Serial Peripheral Interface (SPI) for the DAC and ADC

PYKC 26 Oct 2017 MSc Lab — Mastering Digital Design Lecture 3 Slide 2

Here again is a list of topics covered in this lecture. The we basically will cover three
things: PWM, FSM design and SPI for interfacing. All these are relevant to Part 3 of
the Experiment for this week.




Pulse-width Modulated (PWM) DAC

¢ Simple idea: PWM signal is _ / v
generated by comparing a Triangular | : / // / ;

triangular reference signal . ref / / : :
with the input data value inputdata . . : : :
ewn [ [T [ 1] 1LJ L

signal

+ Triangular value generated by a wrap-around counter
¢ Sample command pulse resets counter, load register and set FF
+ When input value is reached by counter, comparator output a pulse to reset FF

CTR /
COMP pwm_out
é A
> n
AsB D
Lowpass Analogue

: REG Filter
data_in B output
n ﬁn > \

>, T

clk g N O e I N e

load

PYKC 26 Oct 2017 MSc Lab — Mastering Digital Design Lecture 3 Slide 3

Instead of using analogue resistor networlk, it is possible to build a simple DAC using
only digital components.

Here is a circuit schematic for a pulse-width modulated DAC. Here the counter is
used to produce a count value A that ramps up linearly in a sawtooth manner. The
digital value we want to convert to analogue value is data_in, which is stored as B in
the input register. A digital comparator circuit compares this input data with the
counter value (which is ramping up). While A is less than B, the output of the
comparator is high. As soon as A exceeds B, the output goes low. In this way, the
pulse width is proportional to the value of B (or data_in) in a linear manner. Passing
this PWM signal through a lowpass filter will give an analogue output which is
linearly related to data_in.




PWM DAC in Verilog (ex11)

L1111

m oo o

CTR

. f a EOMP
> " AsB

data_in REG .

" —p B

> LD

clk

load

module pwm (clk, data_in, load, pwm out);

pwm_out

input clk; // system clock linitial count = 10'b0:
input [2:0] data_in; input data for convy B
input load; __" pulse to load 7 biwavs @ (posedge clk) begin
output pwm_out; PWM output count <= count + 1'bl;
o if (count > d)
reg [2:0] d; 1 register pwm out <= 1'b0;
reg [9:0] count; 1 10-bit cour else B
reg pwm_out; pwm out <= 1'bl;
end -
always @ (posedge clk)
if (load == 1'bl) d <= data_in; hodule
PYKC 26 Oct 2017 MSc Lab — Mastering Digital Design Lecture 3 Slide 4

This is how the PWM module works. It is very simple, but very effective. You should
compare the DAC output and PWM output in Part 3 of the experiment, and see that the two

methods are equally effective in producing an analogue voltage.




Synchronous State Machines

¢ Synchronous State Machine (also called Finite State Machine FSM)

= Register + Logic

Rules:

Inputs
7/
CLOCK L Outputs
1 A
P> C Combinational
NEXT_STATE , STATE, Logic ,NEXT_STATE
/ 1D / /

The state is defined by the register contents
Register has n flipflops = 2" states
The state only ever changes on CLOCKT
- We stay in a state for an exact number of CLOCK cycles
The state is the only memory of the past

0 Never mess around with the clock signal
0 Never use asynchronous SET/RESET inputs to register (asynchronous =

independent of CLOCK)

PYKC 26 Oct 2017 MSc Lab — Mastering Digital Design Lecture 3 Slide 5

Here is a simplified generic diagram of a finite (or synchronous) state machine (FSM
or SSM). A set of D-flipflips are used to store the current state value. The current
state together with external inputs are fed to a combinational logic circuit to
evaluate two things: the next state and the current outputs.

With an n-bit register and using binary state encoding (i.e. coding states as binary
number), such machine can have a maximum of 2”n states.

This is a synchronous state machine because the transition to the next state is
synchronous with the rising edge of the clock signal. Therefore all output signals are
synchronized.

There are two basic rules in designing a FSM that operates reliably:

1.Do not put logic in front of the clock signal. Doing so is likely to cause timing issues
when the SSM is used in conjunction with the rest of the system.

2.Do not use asynchronous SET or RESET signals. Doing so would make the rest of
the system NOT synchronous to the CLOCK signal.




Combinational Logic Block

Inputs
4
CLOCK Outputs
1 L— o —F—
P> C Combinational
NEXT_STATE , D STATE Logic ,NEXT_STATE
7 7/

¢ The combinational logic outputs specify two things:

+ the output signals during the current state
These may change during the state if the inputs change

+ which state to go to at the next CLOCK
This too may change during a state but the only thing that matters is its
value just before CLOCK

¢ combinational logic has no internal feedback loops = no memory

» combinational logic outputs are entirely determined by the current STATE
and the current Inputs

PYKC 26 Oct 2017 MSc Lab — Mastering Digital Design Lecture 3 Slide 6

The combinational logic circuit in a FSM performs two separate tasks:

1. It determines what the output signals should be. This derived by the current
state value STATE and the current inputs. Therefore such output signals could
change in the middle of a clock cycle if input signals are NOT synchronized with
the CLOCK.

2. It determines what the next state value should be, i.e. the state transition of the
FSM.

The combinational logic block (by definition) contains no memory (or register)
circuit.




Example 1: Design a Noise Pulse Eliminator (1)

+ Design Problem: Noise elimination circuit a=...00
b= ...001

c=...11

- We want to remove pulses that last only one clock cycle

N L U U L
OUT [ideal) [ I

(91 d=.
1
¢ Use letters a,b,... to label states; we (%
choose numbers later. @ 1 1
¢ Decide what action to take in each ) 6 0

state for each of the possible input 0 1
conditions. 1 m 0

¢ Use a Moore machine (i.e. output is 3) 6
constant in each state). Easier to 5 )
design but needs more states & adds
output delay.

..110

4)

PYKC 26 Oct 2017 MSc Lab — Mastering Digital Design Lecture 3 Slide 7

We will now consider the design of a FSM to do some defined function:

Design a circuit to eliminate noise pulses. A noise pulse (high or low) is one that lasts
only for one clock cycle. Therefore, in the waveform shown above, IN goes from low
to high, but included with some high and some low noise pulses. The goal is to clean
this up and produce ideally the output OUT as shown.

Here we label the states with letters a, b, c .... Starting with a when IN =0, and we
are waiting for IN -> 1. Then we transit to b. However, this could be a noise pulse.
Therefore we wait for IN to stay as 1 for another close cycle before transiting to ¢
and output a 1. If IN goes back to zero after one cycle, we go to a, and continue to
output a 0.

Similar for state ¢, where we have detect a true 1 for IN. If IN -> 0, we go to d, but
wait for another cycle for IN staying in 0, before transiting back to state a.

Therefore this FSM has four states. Note that in reality, OUT is delayed by ONE clock
cycle. There is in fact no way around this — we have to wait for two cycles of IN=0 or
IN=1 before deciding on the value of OUT.




Design a Noise Pulse Eliminator (2)

1. If IN goes high for two (or more) clock cycles then OUT must go high, whereas if it goes
high for only one clock cycle then OUT stays low. It follows that the two histories “IN low
for ages” and “IN low for ages then high for one clock™ are different because if IN is high
for the next clock we need different outputs. Hence we need to introduce state b.

2. If IN goes high for one clock and then goes low again, we can forget it ever changed at all.
This glitch on IN will not affect any of our future actions and so we can just return to state
a.
If on the other hand we are in state b and IN stays high for a second clock cycle, then the

output must change. It follows that we need a new state, c.

3. The need for state d is exactly the same as for state b earlier. We reach state d at the end
of an output pulse when IN has returned low for one clock cycle. We don’t change OUT yet
because it might be a false alarm.

4. If we are in state d and IN remains low for a second clock cycle, then it really is the end of
the pulse and OUT must go low. We can forget the pulse ever existed and just return to

state a.
Each state represents a particular history that we need to
distinguish from the others:
state a: IN=0 for >1 clock state b: IN=1 for 1 clock
state c¢: IN=1 for >1 clock state d: IN=0 for 1 clock
PYKC 26 Oct 2017 MSc Lab — Mastering Digital Design Lecture 3 Slide 8

This example illustrates how each state represents a particular history that needs to
be recorded.
This slide reiterates who we arrives at the state diagram and what each state means.




Implementing the FSM (1)

+ Assign each state a unique binary number. Your choice affects circuit complexity but
the circuit will work correctly whatever choice you make.

¢ State Assignment Guidelines (manual assignment):

- Any outputs that depend only on the state should if possible be used as some of
the state bits. (e.g. binary counter — outputs & states are the same.)

- Assign similar (=most bits the same) numbers to states (i) that are linked by
arrows, (ii) that share a common destination or source, (iii) that have the same
outputs.

- If two subsets of the state diagram have identical transitions with identical input
conditions, they should be numbered so that corresponding states have similar
numbers. .

¢ Example: State Numbers: S1,S0
Inputs/Outputs: INOUT

e S1is the same as OUT (from the first guideline)
¢ All states linked by arrows differ in only one bit (from the second guideline)

PYKC 26 Oct 2017 MSc Lab — Mastering Digital Design Lecture 3 Slide 9

Before mapping the state diagram to hardware, we need to perform state encoding
— giving each state a unique binary value. For the noise eliminator, we have four
states and therefore if we use binary encoding, we need two state bits to encode all
four states. Here we assign values $1:50 of 00, 01, 11 and 10 to states a, b, cand d
respectively.

Note that you could assign ANY binary number to any state — and the implemented
FSM will work. However, different state encoding will result in different
implementations, affecting the complexity of the digital logic.

In the assignment above, we deliberating make S1 the same as OUT — this simplifies
the output logic.

We deliberately make all states linked by arrows only having one bit changing
(hence 01 -> 11). This tends to simply the transition logic and reduce glitches.




Implementing the FSM (2)

+ Now we can draw a Karnaugh map (really three State Numbers: S1.S0
K-maps in one) giving NS1, NSO and OUT in Inputs/Outputs: INJOUT
terms of S1, SO and IN: g

NS1.NS0/OUT

S1.S0 | IN=0 IN=1
NS1
00 [ o000  o01/0 s150 | IN=O IN=1
01 00/0 11/0
11 101 11/ 00 0 0
10 | 00/1 11/ 0l 0 1
11 1 1
10 0 1
PYKC 26 Oct 2017 MSc Lab — Mastering Digital Design Lecture 3 Slide 10

Once we have completed state encoding, we can fill in the state transition table with
binary values for the current state values S1:0, the next state values NS1:0 and the
output OUT. This is shown on the left.

If you were to design this FSM by hand, you would need to generate Boolean
equations for the next state values NS1 and NS2, and the output signal OUT.

You may even use K-map to perform Boolean simplification.

10




Implementing the FSM (3)

+ From this we can derive Boolean expressions for
the combinational logic block:

|NSl =IN-(S1+S0)+S1-S0 NSO =IN OUT:SII NSI.NS0/OUT
IN S1.S0 | IN=0 IN=1
CLOCK [ ., 00 00/0 01/0
-1> r Combinational out 01 00/0 11/0
NST g |1 Logic NS 11 10/1 11/1
NSO S0 NSO 10 00/1 11/1

IN I U U I -

I | | I
S1:0 0O Mo M3 3 @2 3 20 0
(| I |1 Il [ |
OUT [ideal] | |
OUT [actual] [ |
PYKC 26 Oct 2017 MSc Lab — Mastering Digital Design Lecture 3 Slide 11

Now we can derive the Boolean express for NS1, NSO and OUT in the usual way.

Since in general FPGA architecture, the logic elements can handle many inputs (at
least 4 input signals) and is much more complex than a simple logic gate,
implementing the Boolean equation for NS1 would only use ONE logic block.
Furthermore, each logic element also include its own registers. So implementing
FSM in FPGAs is easy and efficient.

Note that the actual output waveforms shows that OUT has a one clock cycle delay.

11




One-hot encoding

+ |Instead of using binary encoding, which works very well in the noise
eliminator example, an alternative is to use one-hot encoding.

+ Inone-hot encoding, each state is encode with a binary value that has a
single ‘1’ bit and the rest of the binary variables are ‘0'.

¢ Therefore, for the noise eliminator SSM, the states could be encoded as:
a=0001 b=0010 <c¢c=0100 d=1000

+ Using one-hot encoding would use MORE state registers. For N-states, we
would need to use N flipflops.

+ The advantage is that the state transition and output logic could be much
simpler than using binary encoding. There is no longer need for logic to
decode the binary number.

+ Since FPGAs are a register-rich architecture (each FF is preceded by a small
block of logic in the form of a 4-LUT or an ALM), using one-hot encoding
could result in simpler and fast SSM implementations.

PYKC 26 Oct 2017 MSc Lab — Mastering Digital Design Lecture 3 Slide 12

In implementing FSMs using FPGAs, we often use a form of state encoding different
from simple binary encoding. It is known as one-hot encoding.

With one-hot encoding, only one-bit in the state value is “hot” (i.e. set to ‘1’), and
all the other bits are “cold” (i.e. reset to ‘0’).

Using one-hot encoding matches the FPGA architecture well. Each FPGA logic
element contains a combinational logic module and one or more registers.
Therefore FPGA is a register-rich architecture.

As an exercise, please implement the noise eliminator using one-hot encoding

instead of binary encoding as we have in the previous slides by hand (i.e. without
using CAD tools). You will appreciate why one-hot encoding is efficient with FPGAs.

12




Eliminator design in Verilog

moduTe eTiminator (out, in, clk, rst);

outpuc oues
output out; Declarations

define states one-hot encoding
parameter S_A = 4°b0001; S_B = 4 b0010;
parameter S_C = 4°'b0100; S_D = 4'b1000;
parameter NSTATAE = 4;

reg [NSTATE-1:0] state;

specify state machine transition
always @ (posedge clk)
‘i¥ (rst==1"bl) - always @ (*)
state <= S_A; case (state)
else S_A: out = 1'b0;
case (state) S_B: out = 1'b0;
S_A: if (in==1'bl) state <= S_B; S_C: out = 1'bl;
s_B: if (in==1'bl) state <= 5_C; S_D: out = 1'bl;
else state <= S_A; endcase
s_C: if (in==1'b0) state <= S_D:
s_D: 1if (in==1'bl) state <= S5_C; endmodule
else state <= S_A;
default: ; do nothing
endcase
PYKC 26 Oct 2017 MSc Lab — Mastering Digital Design Lecture 3 Slide 13

Instead of manually designing a state machine, we usually rely on Verilog
specification and synthesis CAD tools such as Altera’s Quartus software.

Here we use an EXPLICIT reset signal rst to put the state machine in a known state.
We also use one-hot instead of binary encoding of the states. This is specified in the
parameter block.

Using parameter block to give a name to each of the states has many benefits: the
Verilog design is much easier to read; you can change state assignment values
without needing to change any codes. In general, parameter block allows you to use
symbols (names) to replace numbers. This makes the code easier to read and easier
to maintain, and it is a good habit to get into.

The state variable declaration reg [NSTATE-1:0] is used here to show that you there
are 4 states (S_AtoS_D).

When specifying FSM in Verilog, you should following the following convention:

e Use always @ (posedge clk) block to specify the state transition. Note that we use
the <= assignments (non-blocking) in this always block because you are responding
to clock edges.

¢ Use a separate always @ (*) block to specify the the output logic. We use normal
assignments (blocking) here because this is actually a combinational logic block, not
sequential circuit.

13




Eliminator simulation in Quartus (RTL)

IN
S1:0 0 :1: 0 1: 3 :2 3 [o 3 [2\'0:1:0
I | | | L ]
OUT [actual]

feliminator /ck

/feliminator fin

upuyuuypuyyuypugyuypuyuypuyLe
1 | [ [ L

Jfeliminator frst

Jeliminator /state

(C I S I I (U N 2 2 2 ] I N 2 1 I (I

[feliminator fout

Now

=] o|lo|ululvu
'8 3|33
2

PYKC 26 Oct 2017

MSc Lab — Mastering Digital Design

Lecture 3 Slide 14

If you enter this Verilog description into Quartus and simulate the circuit, you will
see the waveform as shown in this timing diagram as expected. Note that the actual
waveform for out is NOT the ideal waveform, but is delayed by one clock cycle.

14




Example 2 — A pulse generator

¢ Design a module pulse_gen.v which does the following: on each positive edge of the
input signal IN, it generates a pulse lasting for one period of the input clock.

2/dk
2fin
2/pulse
2/state

IDLE WAIT_LOW

IN_HIGH

¢ Needs THREE states (not two).

PYKC 26 Oct 2017 MSc Lab - Mastering Digital Design Lecture 3 Slide 15

Let us now consider another example, which will appear in the Lab Experiment later.
You are required to design a pulse generator circuit that, on the positive edge of the
input IN, a pulse lasting for one clock period is produced.

The state diagram for this circuit is shown here. There has to be three state: IDLE
(waiting for IN to go high), the IN_HIGH state when a rising edge is detected for IN,
and WAIT_LOW state, where we wait for the IN to go low again.

Shown here is the timing diagram for this design. This module is very useful. It

effective detects a rising edge of a signal, and then produces a pulse at the output
which is one clock cycle in width.

15




Pulse Generator in Verilog

¢ Design a module pulse_gen.v which does the following: on each positive edge of the
input signal IN, it generates a pulse lasting for one period of the input clk.

// specify state machine transition
always @ (posedge clk)
case (state)
IDLE: if (in==1"bl) state <= IN_HIGH;
IN_HIGH: if (in==1"bl) state <= WAIT_LOW;
else state <= IDLE;
WAIT_LOwW: if (in==1"b0) state <= IDLE;
default: ; // do nothing
endcase

module pulse_gen (pulse, in, clk);

' specify output combinational logic

input in, clk; always @ (%)
output pulse; case (state) )
IDLE: pulse = 1'b0;
reg [1:0] state; IN_HIGH: pulse = 1°bl;
reg pulse; WAIT_LOW: pulse = 1'b0;
endcase

define states binary encoding
parameter IDLE = 2 b00;

parameter IN_HIGH = 2 'b01; endmodule
parameter WAIT_LOW = 2'bl10;

initial state = IDLE;
initial pulse = 1°b0

PYKC 26 Oct 2017 MSc Lab — Mastering Digital Design Lecture 3 Slide 16

This FSM has three states: IDEL, IN_HIGH and WAIT_LOW. Mapping the state diagram to
Verilog is straight forward.

1.The declaration part is standard. This is followed by the parameter section.. Here we use
straight forward binary number assignment, and therefore we have two state bits (maximum
four states, but only three are used).

2.The initial section is for initialization. Normally for a FSM design, it is best to include a
RESET input signal which, when asserted, will synchronously put the state machine to an
initial state. Here we are using a nice feature of FPGAs, which allows the digital circuits to be
initialised to any states during CONFIGURATION (i.e. when downloading the bit-stream).
When you configure the FPGA, the registers used for state[1:0] will be loaded with the value
2’b00The actual state machine is specified with the always @ block.

3.The first line defines the default output value for pulse is 0. This ensures that pulse is
always defined.

4.The case statement is the best way to specify a FSM. Each case specifies both the
conditions for state transitions and the output. Itis important to note that state and output
specified for each CASE are the next state and next output. For example, if the FSM is in the
IDLE state and in==1'b1 on the next positive edge of clk, the FSM will go to state IN_HIGH
and make pulse go high.

5.The <= assignment specifies that the changes will occur simultaneously when the always @
block is exited.

6.Finally, the default section will catch all unspecified cases. In this case, default section is
empty (i.e. by default, do nothing). YOU MUST ALSO INCLUDE THE DEFAULT SECTION IN
YOUR FSM DESIGN.

16




Example 3: delay module (1)

¢ Here is a very useful module that combines a FSM with a counter.
¢ |t detects the rising edge on trigger, then wait (delay) for n sysclk cycles before
producing a 1-cycle pulse on time_out.

¢ The external port interface for this module is shown below. We assume that nis a 10-
bit number, or a maximum of 1023 sysclk cycles delay.

Design Name : deTay

File Name : delay.v

delay Function : A rising edge on trigger input is delayed by n clock
. then produces a one cycle pulse at output

10 I [ e et L
N —— time_out module delay (
> sysclk, Clock input to the design
. trigger, Initial the delay time_out signal
trigger n, a 10 bit time constant value
time_out goes high for 1 sysclk after n cycles

’

sysclk — s~
pefine number of bits in delay counter
parameter BIT_SZ = 10;

e Required reg declard,,_____________ pefine ports -------—--mmmmmmmmmmmmmme e
reg [BIT_sz-1:0] count; input sysclk, trigger;
reg time_out; input [BIT_SZ-1:0 n;
output  Time_out;

[ The main module is a FSM WTTIT EmpDETOET COUNTTEr™=
reg [1:0]state;
parameter IDLE = 2'b0O, COUNTING = 2'b01;
parameter TIME_OUT = 2'b10, WAIT_LOW = 2'bll;

initial state = IDLE; // initialise the Fsm
initial count = n - 1'bl;

PYKC 26 Oct 2017 MSc Lab - Mastering Digital Design Lecture 3 Slide 17

Finally, here is a very useful module that uses a fourl@-state FSM and a counter. It is the
combination of the previous example with a down counter embedded inside the FSM.

The module detects a rising edge on the trigger input, internally counts n clock cycles, then
output a pulse on time_out. This effectively delay the trigger rising edge by n clock cycles.
Here we have the port interface and the declaration parts of the Verilog design.

17




Example 3: delay module (2)

output: time_out

trigger

case (state)
IpLe: if (trigger==1'bl)
state <= COUNTING;
COUNTING: if (count==0) begin
count <= n - 1 bl;
state <= TIME_OUT;

end
else
count <= count - 1
TIME_ouT: if (trigger==1'b0)
state <= IDLE;
else
state <= WAIT_LOW;
WAIT_Low: if (trigger==1'b0)
state <= IDLE;
default: ;// do nothing

endcase

always @ (*)
case (state)
(count = 0) IDLE: time_out

COUNTING: time_out = 1'b0;
TIME_OUT: time_out = 1'bl;
WAIT_LOW: time_out = 1'b0;
default: ;
endcase
endmodule // End of Module counterl6

always @ (posedge sysclk) // state transition part

"bl;

PYKC 26 Oct 2017

MSc Lab - Mastering Digital Design

Lecture 3 Slide 18

The FSM state diagram is very similar to that for pulse_gen.v. However we have four
states instead of three. Go through this yourself and make sure that you understand

how this works.

18




The Analogue I/O Card

I

+ Provides analogue inputs and ]©@ © © © © © ©
Ou'(puts " Analogue 1.0 Board

+ Contains 2 channels ADC, one for a oo | oy [P Ct2

dc voltage set by a potentiometer &
another from a socket

+ Has 1 DAC to connected to the right
channel, and a digital output to the
left channel of a headphone socket

+ Includes low-pass filter and
operational amplifiers

+ Will be using this board for
Experiment: VERI part 3 and 4

P

)

0.
‘o
2]
L
| c2

fod

PYKC 26 Oct 2017 MSc Lab ~ Mastering Digital Design Lecture 3 Slide 19

| also provide a purpose-built ADC/DAC board to support the lab experiment. This
analogue 1/0 board in only needed for Part 3 and 4 of VERI. However | will now be
examining the digital serial interface for these converter chips.

19




Schematic of the Analogue I/O Card

AJ20 PWM_OUT R Lowpass
» Filter
5, DAC_CS
© AD20 >
® 9 DAC_SDI
—p T |AGI8 — R o
10 %‘_ Ak21|  DAC_LD MCP4911 .
© | 10-bit DAC L J
AF20|__ DAC_SCK
(Cyclone'
FPGA = SoC
3.3V
- AF ADC_SCK
;' () 2 ADC_CS - CHo
SOMHz 8 T | AG20 — >
T "r“-u ADC_SDI MCI?3002
S | AG21 = 10-bit ADC
Al21 ADC_SDO CH1 = —

PYKC 26 Oct 2017 MSc Lab — Mastering Digital Design Lecture 3 Slide 20

This shows the block diagram of the analogue 1/O card used in the VERI experiment.
It consists of a DAC (MCP4911) and a ADC (MCP3002), both using Serial Peripheral

Interface (SPI). The DAC output is buffered by a unity gain opamp connected to the
right channel of a stereo jack socket.

The ADC has two input channels, one from a potentiometer providing a dc voltage
(CHO) and another from the 3.5mm jack socket (CH1).

Finally, there is a 2" order low-pass active filter, the input of which is driven directly
from a digital output pin of the Cyclone FPGA. This is intended to provide filtering of
a pulse-width modulated DAC output from the FPGA.

20




DAC - used in analogue /O card

¢+ Microchip MCP4911 10-bit DAC

¢ Uses resistor string architecture (earlier lecture)

+ Serial Peripheral Interface (SPI)

Rail-to-Rail Output
SPI Interface with 20 MHz Clock Support

Voo @]®* ~  [E]Vour . ;
©E % [Mve |* Simultaneous Latching of the DAC Output
sck 3] g (5] Veer with LDA(F Pin
soim] = [5)ipac | * FastSettling Time of 4.5 ps
» Selectable Unity or 2x Gain Output
« External Voltage Reference Input
« External Multiplier Mode
Symbol Description
Voo Supply Voltage Input (2.7V to 5.5V)
[ Chip Select Input
SCK Serial Clock Input
SDI Serial Data Input
LDAC DAC Output Synchronization Input. This pin is used to transfer
the input register (DAC settings) to the output register (Vo)
VREer Voltage Reference Input
Vss Ground reference point for all circuitry on the device
Vour DAC Analog Output

DAC
Register

String
DAC

Power-on
Reset z

Output
Logic

Vss

PYKC 26 Oct 2017

MSc Lab — Mastering Digital Design

Lecture 3 Slide 21

The DAC used with the I/O card is 10-bit, and it uses the Serial Peripheral interface.
Its functional block diagram is shown here. The SPI interface has four signals, which

should be drive by either the microcontroller or the FPGA. The DAC itself uses a
resistor string architecture (i.e. just a bunch of 1024 series resistors of identical

values). It has a selectable gain of 1X or 2X.

21




Serial Peripheral Interface for DAC (SPI)

bit 15 0= Write to I?AC register bit 12 SHDN: Output Shutdown Control bit
L = lIgnore this command 1= Active mode operation. VOUT is available.
bit 14 BUF: Vier Input Buffer Control bit 0 = Shutdown the device.

1 = Buffered Veer = 1.23V DIt 11-0  D11:D0: DAC Input Data bits. Bit x Is ignored.

= Unbuffered bit 11-2 D9:D0: DAC input data bit

: Output Gain Selection bit
1X (Vour = VRer * D/4096) Vout = Vrer * (D[9:0]/1024)
2x (VOUT =2" VREF * D/4096)

ax SCK frequency is 20MHz

o

bit 13 G

[

nup

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (Mode 1,1)
- e Lty
SCK ! (Mode 0,0)

We use 1TMHz due to ADC limits.

l«—— config bits 12 data bits

sol | 0 YBUF{GAJSHDNJ Do) D8 ) D7) D6Y D5Y D4} 03] D2J D1} D0Y X Y X

datasheet
Vout Vout settling time = 4.5us, INL = =1LSB, DNL = +0.2LSB /— p23-25

PYKC 26 Oct 2017 MSc Lab — Mastering Digital Design Lecture 3 Slide 22

To send a value to the DAC to output (i.e. produce the analogue output Vout), a 16-
bit value is sent to the DAC chip in a serial manner. The Chip Select (SC) signal going
low indicate that this is the start of the data. This establishes the beginning of the
data frame. First data bit (bit 15) is always 0. Bit 14 determines whether the
reference voltage (Vreg) is buffered or not buffered (via an internal opamp). For our
design, Vref is around 3.3V.

Bit 13 determines the gain of the DAC (x1 or x2). Bit 12 is set to 1 if you are using
the DAC, and set to O if you want to shutdown the device to conserve power.

Bit 11 to 2 contains the 10-bit data D[9:0] to convert into analogue voltage Vout,
MSB first. Bit 1 and O are don’t cares.

The LDAC (low active) signal can be connected to ground or used a low active strobe
signal to transfer the data to the DAC register (i.e. tell the DAC to update Vout). If
LDAC is low, DAC update happens on rising edge of CS_bar.

22




Interfacing the FPGA to the DAC and ADC

¢ Overview of the DAC/ADC
¢ DAC is DC coupled (no capacitor
in signal path)
¢ ADC is AC coupled (why?)
¢ Interface circuit to DAC:
¢ spi2dac.v
¢ |Interface circuit to ADC
¢ spi2adc.v

SOMH2
.

Important points to note

sl data_out
spi2dac
TEDC
(=] - o0 o

L ¢ qulone'

gtdata_nn 3
spi2adc

AF21

AG20

PWM_OUT Lowpass

DAC_CS

DAC_SDI

DAC_LD

DAC_SCK

ADC_SCK

ADC_CS

AG21!
A1

ADC_SDI

ADC_SDO

Filter

MCPag11 [
10-bit DAC | L

CHO

MCP3002
10-bit ADC

CH1

><l:u

#DAC and ADC function are NOT done within Cyclone V FPGA

#Conversion from/to analogue signals are done with 2 8-pin chips on Add-on card

+Why do we need serial-parallel interface circuits? To fit everything within 8-pin package
#A single serial clock is used for both ADC and DAC — set at 1MHz

+This is different from the system clock of 50MHz (fixed within DEO)

#Chip-select is low only when sending serial data to DAC chip on SDI pin

¢LDA is low only when all 10-bit data sent and DAC to be loaded with new value

PYKC 26 Oct 2017

MSc Lab - Mastering Digital Design

Lecture 3 Slide 23

This is a simplified diagram showing how the Cyclone V FPGA is interfaced to the two
data converters. There are two ADC channels and in our experiment, we are mostly
using channel 1 via the 3.5mm jack socket. You will be supplying speech signals

from the desktop computer.

There is one DAC which drives both the small speaker and, much better, drives the
ear-phone. (Please bring the ear-phone to the lab.)
The interface between the FPGA chip and the converters is through the SPI bus. You
are given the Verilog design for these two interface modules: spi2dac.v and

spi2adc.v. In the rest of this lecture, | will be going through the design of the spi2dac

module.

23




spi2dac design overview

+ The components .
g . spi2dac shift_reg[15]
inside spi2dac are:
data[9:0] DI

. CIOCk d|V|der 1MHz 16-bit data shift register

2. Load detector to 50MHz 1 IMHz [ o
50 /> A & -
detect load pulse J '

3. FSM to control the L ~ =

Spl interface ﬂ._. load detector R .
L | dac_start spi o
4. Parallel to serial controller DA
shift register to shift MH
OUT the command SR
and data to the
DAC + Note that the Verilog code is designed to match
5. Various gates e.g. the block diagram shown here
inverters and AND + It consists of TWO state machines, a counter
gates and a shift register
PYKC 26 Oct 2017 MSc Lab —~ Mastering Digital Design Lecture 3 Slide 24

In order to use the DAC, you have to include the interface module “spi2dac” in your
design. This module has a schematic shown above. It takes two inputs (in addition
to the 50MHz clock signal): data[9:0] is the 10-bit digital data to be converted by the
DAC, and a load signal which is a high pulse to trigger the spi2dac module to send
the 10-bit data to the DAC.

The internal working of sp2dac can be divided into 4 main modules. The divide-by-
50 module is straight forward — it produces a 1MHz clock for the finite state
machine, and is gated through the AND gate to generate the serial clock signal (at
1MHz).

The load detector module handles the load command and produces control signals
to the SPI state machine and the shift register.

The shift register sends the control bits and the 10-bit data serially to the SDI output.
The spi controller FSM is the main control module designed as a state machine.

We will consider each sub-module individually in next week’s lecture.

24




