Lean Cuisine: a low-fat notation for menus

M.D. Apperley and R. Spence*

The specification, design, implementation and control of highly inter-
active direct manipulation dialogues is of increasing interest.
However, existing techniques fall well short of the goal of isolating the
design of the dialogue from the detail of its implementation. This
paper closely analyses the structural characteristics of menu systems, a
major component of such dialogues, and arising from this analysis
proposes a new diagrammatic approach to their description. This
approach is shown to be able to completely specify the details and
behaviour of a system of menus from an external point of view. The
parailels between this notation and the recently defined class of auto-
mata, Event-Response Systems, are discussed, demonstrating the
potential for a direct implementation of an interface from this deserip-
tion. Further, it is suggested that the notation could be extended to
cover all aspects of direct manipulation interaction.

Keywords: dialogue design, design notation, menu dialogues, menu
syntax, dialogue control

A menu is essentially a list from which choices can be made. The term origi-
nated in the context of restaurants and eating establishments, where it has two
distinct but closely related meanings; a list (explicit or implied} of dishes
available, from which the diner may make a choice, or a list of the dishes that
constitute the meal to be presented, without necessarily any choice,

In the context of human-computer dialogues, the term ‘menu’ has been
adopted to describe a system in which the user is presented with a number of
options, from which a choice can be made. With the proliferation of high
resolution graphical workstations and the sophisticated software they support,
menus are becoming an increasingly common form of dialogue. In fact, it could
be argued that the menu is fundamental to achieving the direct manipulation
interfaces (Hutchins ef al., 1986) which these systems are moving towards. Over
the past ten years, the use of menus in the computer context has been the
subject of a number of studies and expositions: the best number of choices per

Department of Computer Science, Massey University, Palmerston North, New Zealand. Tel:

64 63 69 099

* Department of Electrical Engineering, Imperial College of Science, Techrology and Medicine,
Exhibition Read, London SW7 2BT, UK. Tel: 01-589 5111

0953-5438/89/010045-24 $03.00 © 1989 Butterworth & Co (Publishers} Lid 45

menu {(Miller, 1981); the layout of these choices (Perlman, 1984); the organisa-
tion of hierarchies of menus (Norman and Chin, 1988), and the navigation
through such structures (Apperley and Spence, 1983); the classification of
information in hierarchical systems (Giroux and Belleau, 1986); and the use of
icons rather than words (Hemenway, 1982), to mention just some of this work.

The more general problems of dialogue specification, implementation and
control have received considerable attention in the past few years. At one
extreme there are comprehensive user interface management systems (Kilgour,
1987; Macl.ean, 1987; Palmer, 1987; Pfaff, 1985) which attempt to solve all of
these in a single package and, at the other, there are notations and methodolo-
gies to simplify and improve the task of implementation (Borufka et al., 1982;
Cardelli and Pike, 1985; Lieberman, 1985). A number of specification techniques
for the dialogue designer have also been proposed (Brown, 1982; Browne ef al.,
1986; Hill, 1987; Jacob, 1985; Kasik, 1976; Kieras and Polson, 1983; Wasserman,
1985). Although many of these schemes provide extensive tool-kits and primi-
tives specifically to support the direct manipulation style of interaction, these
highly interactive interfaces remain by no means easy to implement, or even to
specify. It is not that the supplied libraries are inadequate in themselves, but
that there is an enormous gap between these primitives and the concepts that
are fundamental to the direct manipulation paradigm.

It has been suggested (Lieberman, 1985) that '... construction of these
interfaces is still a black art . . . (and) with today’s software often requires much
effort, is error-prone, and much work must be repeated for each application’. In
fact, in the majority of cases it is considerably easier to produce a poor interface
than it is to produce a good one. These facts, coupled with the additional
problems that the technical complexity of high-performance bit-mapped dis-
play systems can divert the implementors’ attention from the dialogue itself
(MacLean, 1987), and that in general, the user interface receives too little
attention in the design process (Wasserman, 1985), or is treated as being of
secondary importance to efficiency (Borufka et al.,, 1982), make the effective
design and implementation of good direct manipulation interfaces an awesome
task at the present time.

Fundamental to this problem is the lack of progress towards an appropriate
dialogue specification technique, one which caters for the complexity of the
direct manipulation environment, which truly isolates the dialogue from the
detail of its implementation, and which is a tool for the dialogue designer rather
than the programmer. Jacob (1985), in advocating a diagrammatic technique for
dialogue specification, has neatly summarised the requirements:

‘A visual representation chosen for this purpose needs to describe the external
(user-visible) behaviour of the user interface of a system precisely, leaving no
doubt as to the behaviour of the system for each possible input. It should separate
function from implementation, describing the behaviour of the user interface
completely, and precisely, without unduly constraining the way it will be imple-
mented. The visual representation should be easier to understand, and take less
effort to produce than the more conventional symbolic software. Ideally, the overall
structure of the visual program should represent the cognitive structure of the user
interface. The program should describe the constructs a user will keep in mind

46 Tnteracting with Computers vol 1 no 1 (1989}

when learning about the system — the basic outline around which the user’s
mental model of the system will be built. Finally, the visual representation must be
directly executable in a visual programming environment.’

In the next section of this paper, the structure of computer menus is closely
examined and, from this analysis, the requirements of a menu specification
notation are established. Existing descriptive techniques are reviewed in the
third section, and it is shown that these are inadequate as design and imple-
mentation tools for menu systems. From the analysis of the structural character-
istics of menus, a pictorial notation for their representation is then developed in
the fourth section. This notation is intended specifically for the dialogue
designer, who may have little or no programming knowledge. However,
because it is based on a familiar tree form, it is shown in section five that the
step to direct execution of the notation is not great. Finally it is further sug-
gested that the methodclogy may not just be useful for the specification of menu
dialogues, but could be extended to cover other aspects of the direct manipula-
tion environment.

Structural characteristics of menus

Computer display menus appear in many forms; pull-down, pop-up, static,
dynamic, peel-and-stick, ordered, dispersed, horizontal, vertical, textual, iconic,
explicit, implicit, to name but a few. In this paper, it is not the presentation of
menus that is of immediate concern, but their structure, in terms of the dialogue
facilities they provide. Menus are sometimes used to initiate actions, sometimes
to change the state of a system, sometimes to choose between alternative
parameters, and sometimes to select other menus from which further choices
can be made. It is interesting to note that in the computer-based context, the
notion of a menu is used in both of the gastronomical senses; a menu is used to
convey the range of choice, and also to convey what it is that will be provided.
To cover this diversity of presentation and function, and in the anticipation of
providing extensibility te other facets of human-machine dialogue, the follow-
ing definition of a menu is proposed:

‘A menu is a set of selectable representations of actions, parameters, objects (which
may be other menus), states, and other attributes.’

The term selectable representations conveys the concept of choice in the defini-
tion, but without introducing any constraints as to presentation (of the menu)
or selection mechanisms, or any assumptions about the use of icons or words.
Thus the definition could describe such forms as car dashboards and hi-fi
control panels, as well as the familiar direct manipulation and keyboard-
controlled computer menu systems.

Although it is true that menus are often just a simple list from which a single
choice is to be made, in many cases more than one choice can or must be made,
and there may be complex interrelationships between these choices. Consider
the (gastronomical) menus shown in Figure 1. The ‘Greasy Spoon’ (Figure 1(a))

Apperley and Spence 47

“ - Lo Cuiller Sale

The Greasy Spoon Sussex Smokies
Asparagus Soup

Egg, Bacon & Chips £1.30 Baked Trout with Aimonds
Butiered New Potatoes
Sxusages, Beans & Chlps . . . £1.15 retit Pois
mmsass ffiin
Soup & Toasl 90p Roast {egcf Lamb

Roast Potatoes
Cabbage
a g

s
Gritied Entrecote Steak Garni
Lyonnaise Potatoes

The Leaning Tower French feans
Basic Pizza (cheess & tomato) . . £1.50 Cr;:::ciiff:e;
Additional Toppings 30p each é? r"éfef:si gpf;{::; rr:;e &
onion
mushroom
anchovy b
black olives
sweaat comn
ham

C

Figure 1. Example restaurant menus showing (a) and (b} mutually exclusive groups or
I-from-N choices, and (c) a mutually compatible group or M-from-N choice

offers a simple menu from which the diner is required lo make just a single
selection (which in fact defines the entire meal). On the other hand, ‘La Cuiller
Sale’ (Figure 1(bj) has a menu which is considerably more complex. The
discerning diner will be expected to make a selection of one from the two
starters, one from the three main dishes, and another from the four desserts. It
could be said that for the Greasy Spoon’s menu, all items are mutually exclusive,
requiring a 1-from-N choice, while for La Cuiller Sale, the menu comprises
three mutually exclusive groups, ecach requiring a choice to define a complete
meal (but of course some diners may skip the starter or the dessert). It should
also be noted that the layout (presentation) of these menus conveys very little
about their structural similarities or differences.

A further variation in the internal structure of a restaurant menu can be seen
in Figure 1(c). Here the diner can order a basic pizza, with as many additional
toppings as are required. In other words, any number {from 0 to N) of the N
items in the topping section can be chosen. This can be described as a mutually
compatible group, or an M-from-N choice. (These twa basic menu structures, 1-
from-N and M-from-N, were not the only ones identified by Brown (1982}).
However, certainly in the direct manipulation context, all menus can be des-
cribed in terms of these two structures.}

There are other subtle constraints in the menus shown. It would seem likely
that one could not choose a starter at La Cuiller Sale without also selecting a
main course. Similarly, in the menu of Figure 1(c}, choosing any number of
toppings without choosing a basic pizza would not make sense. These con-
straints, together with the classifications of mutual exclusivity and mutual
compatibiiity, can be described as the grammar or syntax of the menus. It might

48 Interacting with Computers vol T no 1 (1989}

| Stule S

Chicago JPlain Text
Courier Bold
Geneva ftaic
J Helvetica Underiing
MoRaco tulitma
Times Shedoay
Superscript
a Subscript
? Polnt
10 Point Di o
. irect excitation
/12 Polt Indirect___; " {select and/or deselect)
t4 Point select
18 Polnt
24 Point indirect
deselect
b
Figure 2. Two example menus taken Figure 3. Meneme model based on be-
from Macintosh application MacWrike haviour of a flip-flop

be expected that the diner would be aware (perhaps subconsciously) of this
grammat, but it is also likely that the waiter would ensure that the meal chosen
was syntactically {if not gastronomically) correct.

That such constraints are also present in computer-based menus can be seen
in the two examples of Figure 2. These are two menus taken from the Macintosh
application MacWrite.

in Figure 2(a), the user is required to make just a single choice from the Font
menu. This menu clearly constitutes a mutually exclusive group. In Figure 2(b),
the Style and Size menu is more complex. In the upper Style section, the Plain
Text item is mutually exclusive with respect to each of the other items, but Bold,
Italic, Underline, Qutline and Shadow form a mutually compatible set; any
number can be chosen from this group. The remaining twe items in this
section, Superscript and Subscript, form another mutually exclusive group; only
one of these two can be chosen, but that choice is compatibie with the Bold
group. The Size section (the lower part of the menu) is a simple mutually
exclusive group from which just a single item can be chosen.

The structure of these menus is further complicated by the requirement thata
valid choice always be present in the Font menu, and in each of the two sections
of the Style and Size menu. Together, these constraints do result in some less
than obvicus behaviour. For example, although ifems in the Bold group can be
selected and deselected at will, Plain Text cannot be deselected directly, as there
is no unique alternative to satisfy the requirement for a choice of Style.

In other words, what appears to be a relatively simple menu (the Style and
Size menu) can have a quite complex structure of interrelationships and con-
straints, Users of MacWrite, however, are shielded from these complexities. The
grammatical rules have been built into the menus themselves {in this case they
have been programmed as a part of the application); valid selections are always

Apperley and Spence 49

present initially by default, and it is impossible to make an invalid or grammati-
callty incorrect modification. In this sense, the concept of ‘syntax” has little
meaning from the user’s point of view. Selecting a second font in Figure 2(a), for
example, will automatically cancel the selection of the first. Selecting Bold from
the Style menu (Figure 2{b)) will automatically deselect Plain Text, but subse-
quently selecting Italic will leave both Bold and Italic selected, as these two are
mutually compatible. If at some later stage Plain Text is reselected, then both
Bold and [talic will automatically be deselected. On the other hand, if only Bold
is currently selected, and it is deselected by selecting it a second time*, then
Plain Text will be automatically selected as the default alternative. Just as the
waiter would ensure that a chosen meal was syntactically correct, so in this case
the menu handier ensures that the options chosen from the menu conform to
the prescribed rules. Thus the menu syntax is a complexity for the dialogue
designer, and possibly the implementor, to deal with and to specify, rather than
a problem for the user.

The earlier definition of a menu can now be expanded to cover these interre-
lationships and constraints, and to adequately describe the menus of Figures 1
and 2:

‘A menu is a set of selectable representations of actions, parameters, objects (which
may be other menus}, states, and other attributes, in which selections may be
logically related and/or consirained.”

The components of a menu, the selectable representations of the preceding
definition, have commonly been referred to as items (Shneiderman, 1987},
options or labels (Field, 1988). These representations can take many forms. In
traditional (gastronomic) menus they may be single words or short phrases, but
in some cases may include a paragraph describing the dish. In the computer
context, in addition to similar textual variations, increasingly menus may
comprise a collection of graphical symbols or icons. In either case there is the
further possibility of several ‘options’ being incorporated within a single ‘item’.
For example, the Greasy Spoon menu (Figure 1) might contain the entry, Pie
with beans or chips’. This is not just a single option (selectable representation},
but should be considered as either two (Pie with beans, Pie with chips) or three
(pie, beans, chips), with appropriate constraints. To address the inadequacy of
the word item, and to avoid the connotations of the words option and label, a
new term meneme is introduced:

‘A meneme is defined as an individual selectable representation (of an action,
parameter, object, menu, or other attribute) within a menu, and is the minimum or
basic unit of information in the two-way dialogue between the user and the
appilication.’

In this way, the single item ‘Pie with beans or chips’ can be regarded as
comprising two or three menemes.
It follows from the above definitions, that for each meneme there are just two

* This bistable behaviour in menu selection is discussed later.

50 Interacting with Computers vol 1 no 1 {1989)

possible states, selected and not selected®, and that menemes can be described
as bistable (Apperley and Spence, 1983). In other words, the state of a meneme
can be considered to be a binary variable. Without considering the detail of the
selection mechanism, it is possible to draw from the earlier discussion that
there are two distinct mechanisms by which a meneme may change its state;
direct excitation involving specific reference to the meneme itself” ('I'll have the
trout’ or 'I've changed my mind, I won't have any soup’), or indirect modifica-
tion, where because of a constraint or interrelationship, direct excitation of one
meneme causes modification of another. {For example, selecting a second Font
in the menu of Figure 2(a) automatically cancels the first choice.)

‘A meneme has just two possible states, selected and not selected, and the state
may be changed either by direct excitation, or by indirect modification.’

In fact, a meneme behaves in a manner rather similar to that of a generalised
(JK) flip-flop (Tocci, 1980), and a model based on this device (see Figure 3) does
provide for the description of complex interrelationships in menus, such as
those just discussed.

Of the four possible modifications that may take place (direct select, direct
deselect, indirect select, and indirect deselect), not all are necessarily present for
any given meneme. For example, the Plain Text meneme of Figure 2(b) can be
directly selected, but cannot be directly deselected. It will be indirectly selected
if all other menemes in the Style section have been deselected, and it will be
indirectly deselected by the selection of any of the other menemes in that
section. Thus a collection of meneme models such as those shown in Figure 3,
with appropriately labelled indirect excitations, could be used to provide a
specification of the interrelationships, and thus a full description of the behav-
iour, of a complex menu. Figure 4 shows an example of such a description for a
reduced version of the Style menu of Figure 2(b), containing just the five
menemes Plain Text, Bold, Italic, Superscript and Subscript, but exhibiting the
same general characteristics as the full menu earlier described.

A characteristic of the menu systems discussed, {or example the Style menu of
Figure 2(b}, is that they generally allow the user to select a number of different
menemes from a single presentation or menu. The selected menemes might be
considered to constitute the information being passed from the user to the
system. However, there is no specific sequence associated with the selections; it
is not the order in which menemes have been selected that conveys the
information, but rather the total state represented by the eventual selections. In
other words, the dtalogue could be described as asynchronous, occurring in no
particular order or sequence. The term asynchronous is used here in preference
to multi-threaded or concurrent (Hill, 1987). It is maintained that in a direct

* Two other apparent states may commonly be observed; disabled, and thus not available for
selection (which is not really & meneme at all), and temporarily highlighted to show that the
meneme will be selected if the appropriate action is taken. In both cases these “states” are part of the
presentation detaii, and of little consequence to the application.

¥ Often the same direct excitation (for example, a mouse click) which causes a2 meneme to become
selected, will also cause it to be deselected if it is already in the selected state.

Apperley and Spence 51

Plain text Boid ltalic Superseript Subscript

47 | -Vj R j | :T i T

BTOL BH1sU-+L P P Pre Pry

Figure 4. Meneme-based description of behaviour of simplified Style menu, using
flip-flop meneme model

manipulation environment, where the basic dialogue unit (sentence) is genet-
ally a single action, this term more correctly describes the absence of sequence.
In fact, this asynchronous style is a general characteristic of all aspects of direct
manipulation dialogues.

In the restaurant examples, the diner may specify the main meal first,
followed by the starter. Prompts from the waiter may then elicit the type of
salad dressing required, the choice of vegetables, and how the steak is to be
done. Dessert and coffee may be ordered at a subsequent interaction. Orders for
different parts of the meal from different diners at the same table may be
interspersed. Clearly, no significance can be attached to the meneme sequence.
The final total state, defined by the individual meneme states and inscribed on
the waiter’s pad, defines the meal. Perhaps a more graphic example of the
asynchronous nature of a menu dialogue can be seen in many fast-food restaur-
ants. Here there is an active menu in the form of a concept keyboard operated
by the waiter. This device has buttons (menemes) representing individual
components of the meal. These can be selected or deselected by the waiter in
any sequence until the final displayed state is to the satisfaction of the diner.
During the interaction, the state may not only be incomplete, but it may also be
incorrect or at least misleading, as a choice yet to be made may cancel or modify
an earlier one,

In the computer context, a variety of sequences that achieve the same end
result is typical of a direct manipulation environment. A MacDraw user might
define a line having initially specified the line style. Alternatively, the line style
may be specified during the definition of the line (perhaps the start point has
been fixed, but not yet the end point), or aller the line itself has been completely
defined (both start and end points fixed). It is even possible to subsequently
change the line style in an entirely separate interaction.

It has been said of direct manipulation interfaces,

“There are no hidden operations, no syntax or command names to learn. What you
see is what you get. Some classes of syntax errors are eliminated. For example, you
can’t point to a nonexistent object. The system requires expertise in the task
domain, but only minimal knowledge of the computer or computing’ (Hutchins et
al., 1986).

It is now contended that, in fact, there is nothing that one can do with a well-
defined menu interface that could be construed as syntactically incorrect. In

52 [nferacting wilth Computers vol 1 no 1 (1989)

other words, all classes of syntax errors are eliminated. If a file has not been
named before it is saved, and as a result another is inadvertently overwritten,
then this is not a syntax error but a semantic one, brought about by a mismatch
between the user’s model of the interface, and the designer’s model. Further,
the consequence of such semantic errors can be reduced, if not compietely
eliminated, by more careful design of the system. It is suggested that if there is a
syntax of menus, then it is the structural constraints that have been discussed in
this section, and that these constraints will generally be built into the menus
themselves.

Existing notations for interactive dialogue description

Dialogue description techniques have been the subject of two recent compre-
hensive surveys (Cockton, 1985; Green, 1986). Green (1986) makes a distinction
between design notations (informal) and implementation notations (formal},
and concentrates on the latter. Existing techniques are then grouped into three
classes; transition networks, formal grammars, and event models. Following a
formal analysis of these three models, Green (1986) shows that the event model
has the greatest descriptive power. However, this paper is concerned with
techniques for the description and implementation of menus, and in this
section, the three classes identified above are closely examined in this specific
regard.

Transition networks

Transition networks in various guises (finite state machines, finite state auto-
mata, or state transition diagrams} have been extensively used as a dialogue
description technique, by both designers and implementors, and are probably
the most popular form of dialogue description currently in use. Although the
majority of detailed examples and implementations are based on keyboard
interactiont (Jacob, 1983; Jacob, 1985; Kieras and Polson, 1983; Wasserman,
1985), transition diagrams also have a long history in the description of more
interactive graphical dialogues (Foley and Wallace, 1974; Koivunen and
Mantyla, 1988, Newman, 1968), and their use as a specification language for
direct manipuiation interfaces has been proposed (Jacob, 1986).

Transition network diagrams, which essentially describe the behaviour of
finite state automata, are based on a set of nodes (states), and the arcs or links
between them (state transitions). In their basic language processing form, each
arc is associated with a token in the input language. As such, a transition
diagram defines the legal or permissible sequences of input tokens. In describ-
ing interactive dialogues, several enhancements have been made to this basic
scheme

¢ (o allow program actions to be attached to arcs and states

e to provide hierarchical representation of more complex systems using
subdiagrams

to provide for recursive calls to these subdiagrams

& [0 encode some potential states within internal registers (Green, 1986)

Apperley and Spence 53

These enhancements, in various combinations, have enabled transition dia-
grams to be used not just as an informal design tool, but as a means of directly
implementing the user interface.

Although it is true that ‘One of the principal virtues of the state diagram
notation is that . . . they make more explicit what the user can do at each point
in the dialogue, and what the effect will be’ (Jacob, 1985), this notation has
obvious shortcomings when attempting to describe a menu containing a
number of interrelated subgroups, such as the Style menu of Figures 2 and 4,
Because of the absence of sequence in the use of such a menu, there is no
obvious start point or end point in the dialogue. In Figure 5, the behaviour of
the reduced five meneme Style menu is described using a transition network.
Each of the possible menu states (there are twelve in all) is represented by a
state in the diagram. Each of the possible input actions in each state (there are
five for each of the twelve states, corresponding to the direct excitation of each
meneme) is represented by an arc. States have been labelled using upper-case
letters representing the selected menemes in each state, with U representing
superscript, and L representing subscript. The corresponding lower-case letters
are used to represent the direct excitation of each of these menemes. The
diagram has been simplified by using bidirectional arcs where possible.

No explicit system responses have been shown in this diagram, because the
nature of this particular menu is such that the change of state is the only
response that is required. Although the diagram does completely and accurately
describe the behaviour of this particular menu, it is neither simple to produce
nor to understand, and its derivation from the known external behaviour of the
menu is not obvious.

An alternative description is possible, based on the Generalised Transition
Network of Kieras and Polson (1983). In this description (see Figure 6}, the
menu state information is Tiot expressed in the diagram at all. Rather, this
information has been included as a set of global variables, one corresponding to
each meneme, and the only true state in the diagram is that of ‘modify the Style
selection’. There is an arc corresponding to each of the input tokens, in this case
the direct excitation of each of the menemes, and a system response is listed for
each of these. Input tokens and transition conditions are written above the arcs,
and system actions are written below. Arcs emanating from the current ‘state’
are processed in a clockwise sequence from the top, until a successful transition
is made. An arc with no token or condition will always be traversed. Some
actions are represented by subdiagrams, in which case the name of the subdia-
gram appears in parentheses as a response on the relevant arc. Upper and
lower-case letters are used to represent selected menemes and their direct
excitation respectively, as for Figure 5, and S is the set of currently selected
menemes.

This is a more satisfactory transition network description of the Style menu in
that it clearly spells out the permissible user actions for the menu as a whole,
and the effect that each of these actions will have on the “state variable set’ 5.
However, the subdiagram states are artificial from the user’s point of view, and
the description is based more on events rather than states. Consequently, this
description should be considered to be a graphical representation of an event

54 Interacting with Computers vol 1 no 1 (1989)

Figure &. Transition network description of Style menu

model (see the ‘event models’ section) rather than a true transition network.

Formal Grammars
Formal grammars are a technique developed to precisely describe natural
languages, and for some time have been a standard for describing the syntax of
programming languages (to a compiler). They have also been used to describe
interactive dialogues (Jacob, 1983; Reisner, 1981; Reisner, 1982; Shneiderman,
1982), and form the basis for dialogue description in some UIMSs (Palmer,
1987). A fundamental problem that is encountered in using this technique to
describe human—computer interaction is that generally two distinct languages
are involved; one language is used to enter commands to the program, and the
computer uses another to generate its responses (Green, 1986). Essentially, as
with transition networks, the basic technique describes only the syntax of the
language, and various enhancements are needed to define the responses gener-
ated by the computer.

The form most familiar to computer scientists is the Backus-Naur form (BNF)
which is based on production rules. A language is described as a set of rules

Apperley and Spence 55

Remove
Style menu

. Display

Style menu

C ==

beS 5={}
peS
S+~8—-p

1e$S ues

S5«S+u (Y)

ues leS
o S«S5-u S8~ (X}
S«S+1 (¥}

Figure 6. Description of Style menu using Generalised Transition Network

that define the syntactically correct sequences or sentences in the language. The
description is hierarchical, with rules defining sequences of terminal symbols
{(the words of the language) produced by nonterminals (invented higher-level
constructs such as phrases), and sequences of nonterminals produced by
higher-level nonterminals (for example, sentences). In the case of interactive
graphical dialogues, the terminal symbols are the basic actions the user has to
learn and remember, for example the movement of a mouse or the double click
of a mouse button; the nonterminals correspond to sets of actions that can be
grouped together and described as a single operation, for example the

56 Interacting with Computers vol 1 no 1 (1989)

Macintosh sequence to open a file, which involves the concatenation of the two
terminals mentioned.

Because of the emphasis on permissible sequences, this technique does not
adapt well to direct manipulation dialogues, in particular to menus containing
interrelated subgroups such as those described in Figures 2 and 4. At one
extreme, there can be a plethora of rules, listing every possible input sequence.
This case corresponds closely to the transition network of Figure 5. History, or
‘current state’ is conveyed by nonterminals, leading to some 60 rules for the
reduced five meneme Style menu. At the other extreme, the technique can be
used to indicate just the permissible user actions associated with the Style
menu, requiring only a single rule. This would correspond to the top-level
transition network of Figure 6, and would convey no information at all about
the behaviour of the menu. Consequently, comprehensive program code would
need te be attached to this rule to encode this behaviour, to a large extent
negating any benefit to be derived from using the notation.

Although other production-rule descriptions of the Style menu are certainly
possible, in general they will all suffer from the intrinsically sequential bias of
the description technique. Either rules for all possible input sequences must be
listed, an anathema in a direct manipulation environment, and with the inher-
ent problem of including meaningless interactions {Kieras and Polson, 1983), or
alternative or conventional programming notations need to be introduced to
provide much of the description.

Event Models

Event models, a more recent development, are a description technique centred
on events rather than states. In many graphics packages, interaction is based on
queued input events, events generated by physical or logical input devices.
Event models take this notion further, with the dialogue control program and
the application also being possible sources of events, and the programmer able
to define new event types, as appropriate {Green, 1986). Such models have been
used for the dialogue specification and control in a number of UIMSs (Flecchia
and Bergeron, 1987; Green, 1985; Hill, 1986).

Hill (1987} has developed a formal event-response system model, and from
this, a dialogue specification language. An event-response system (ERS) is a
new class of automata comprising a set of flags F, a set of events Z, and a set of
rules. A rule comprises an event, a condition, and an action, such as

(o F1-—> F2

which specifies that if a certain event o occurs when a certain subset Fy of the
flags are all set, then the result is that the flags F; are cleared, and the flags in the
subset F; will be set. In addition to these regular rules, there can be &-rules in
which the event component is omitted. The execution of an ERS involves a cycle
which first processes the e-rules until there are no longer any true conditions,
then waits for an event, and simultaneously processes all of the regular rules for
which this is the event and {or which the condition components are true. This
cycle is repeated continuously.

Apperley and Spence 57

The ERS model adapts well to the representation of the behaviour of a menu.
The direct excitations of the menemes become the events, and the states of the
menemes become the flags. In Figure 7, three menus are described in this way,
with lower-case letters denoting events, and upper-case denoting flags. Figure
7(a) is the ERS description of a simple three-meneme mutually exclusive group,
with the left-hand group of rules showing how the selection of one meneme by
direct excitation causes the deselection of the others. Figure 7(b) is the ERS
description of a simple mutually compatible group, showing no interaction
between menemes. Finally, in Figure 7{c), the ERS description of the more
complex Style menu can be seen to bear a very close resemblance to the
meneme-based description of Figure 4. It should also be noted that this example
uses an &-rule, corresponding to the indirect selection of the Plain Text meneme.

Although it lacks the visual impact of a diagrammatic technique, the ERS
notation has obvious advantages over transition diagrams in conveying the
external behaviour of a menu. With its event bias, it clearly shows the effect of
each possible user action with a minimum of context; by showing the incre-
mental effect on the individual flags, it avoids the enumeration of all possible
states of the menu.

Lean Cuisine: a notation for describing menu syntax

In the preceding section several existing dialogue specification techniques were
examined in light of the requirements of menu systems. Although the event
model was found to be more straightforward in this respect, it could be said of
all of these techniques that they are more suited to the implementor than the
designer; they are better for describing how to achieve a particular behaviour
rather than describing what that behaviour actually is.

Following the analysis of the characteristics of menu systems, and this
critique of current interface design tools, a diagrammatic technique for specify-
ing and describing menu dialogues is now proposed. This technique, referred
to as ‘Lean Cuisine’, is consistent with the notions that:

® a design methodology is required for the dialogue designer

¢ the methodology should in itself provide a good interface to the designer
(MacLean, 1987)

® it should reflect the structure of the dialogue rather than the underlying
program

¢ it be amenable to the direct manipulation environment.

aA-ABC ahA— A alA-A aA— A p:P - PBILGL piP P
b:B—>ABC b:B--B b:B—B b:B— B b:B— BP h:B -8B
cC—-ABC c.C—C c:C—-C ¢ C—=C it T— |,P it—sT
wl—- ULP wlU—0

a b | T LOP .

[+

Figure 7. ERS descriptions of {a) mutually exclusive meneme group, (b} mutually
compatible group, and (c) five-meneme Style menu

58 Interacting with Computers vol T no 1 (1989)

The LC notation is based on a tree diagram, and shows the relationships
between menemes, which are the nodes of the tree. For example, Figure 8(a)
describes a simple menu called A, which offers a choice between B, Cand . A
possible presentation form for this menu is shown in Figure 8(c). The two basic
menu structures identified in Section 2 are represented by two different forms
of branch. The vertical fork shown in Figure 8(a) is used to describe a mutually
compatible group, or an M-from-N choice. In other words, the menu A offers a
choice 0f 0, 1, 2 or 3 menemes from B, Cand D. A mutually exclusive group, or 1~
from-N choice, is represented by a horizontal fork, as shown in Figure 8(b). This
diagram also describes a menu called A, but one which offers a mutually
exclusive choice between the three menemes B, C and D. The presentation
shown in Figure 8(c) could represent either of these two menus. Based on these
two fundamental structures, more complex menus can then be defined.

In the two examples given, A is the menu header or name, but it is treated as
if a meneme. In general, menemes may be terminal (leaf) menemes, with no
emanating branches (such as B, C, and D, in Figure 8), or they may be
nonterminal menemes (such as A), in which case they are themselves headers to
other menus. In this way, hierarchies of menus can be described. For example,
Figure 9(a) represents a system of three menus. The first, A, offers a mutually
exclusive choice between two submenus, B and C. Of these, B offers a mutually
exclusive choice of three items, and C a mutually compatible choice of four.
Selecting B from A would give access to the submenu B. Figure 9(b) shows a
possible presentation of the menu A as a horizontal menu bar, and Figures 9(c)
and 9(d} show the menus B and C presented as pull-down menus from this
menu bar.

From Figure 9, it can be seen that the menu corresponding to a nonterminal
meneme consists of all of its immediate subordinate menemes in the LC
diagram. If there is an order associated with the menemes (for example, as they
are to be presented in a list}, it is as scanned from left-to-right and from top-to-
bottom in this diagram.

The LC technique so far described does not provide for more complex menus
that involve composite structures of both branch types. The structure of Figure
9(a) could be represented only through the use of submenus. However, more
complex structures within a single menu can be accommodated by introducing

A A
m—] C
D
p——;
B C D
b
a b c

Figure 8. (a) LC diagram for simple M-from-N menu, (b) that for a 1-from-N menu,
and (c} possible presentation for either menu

Apperley and Spence 59

3 c
B
c
D
D
£ E
F
F
C B
| :
H
i
G H | J ;
a

Figure 9. (a) System of three menus, and (b), (c) and {d) their possible presentation

the concept of a virtual nonterminal meneme, which is present as a node in the
LC diagram, but does not appear as the header of a menu. Whereas real
nonterminal menemes refer to and invoke further menus, virtual menemes
partition subgroups of basic structures within a menu. The menu (or submenu)
corresponding to a nonterminal meneme can now be defined as all of the
immediately subordinate real menemes, together with any submenus defined
by immediately subordinate virtual menemes.

In Figure 10, the Style section of the menu pictured in Figure 2(b) is described
using this notation. Because of the three distinct groups present in this menu,
two virtual menemes have been intreduced. In the first branch, Style offers a
mutually exclusive choice between Plain Text and the virtual meneme {Fancy
Text}. (To distinguish between real and virtual menemes, the latter are
enclosed in braces.) This virtual meneme in turn represents the mutually
compatible choice of Bold, Italic, Underline, Outline, Shadow and {Indexed},
the latter another virtual meneme offering a mutually exclusive choice between
Superscript and Subscript.

The notation also provides for the specification of initial default values and
the requirement for a valid selection always to be present in certain subgroups.
Default choices are indicated by an asterisk (*) alongside any terminal menemes
which are initially to be in the selected state. In assigning these default selec-
tions, any constraints that they may be subject to must be recognised, so that
only valid combinations are specified. Similatly, the symbol § alongside a
nonterminal meneme (real or virtual) indicates that a valid choice must always
be present in the menu or submenu that this meneme represents; a default

60 Interacting with Computers vol 1 no 1 (1989}

Style?

Piain Text”

{Fancy Text}

Bold Italic Underline Outlire Shadow {indexed}

Superscript

Subscript

Figure 10. Description of Style portion of menu shown in Figure 2(b}, using wirtual
menemes to allow basic structures to be combined. Default selections and ‘required-
choice’” constraints are also shown

choice must be shown under these circumstances. In this context, a virtual
meneme can be considered to be in the selected state if there is a valid selection
present in the menu that it represents.

From Figure 10 it can be ciearly seen that the initial (default) selection is to be
Plain Text. Closer examination of the diagram reveals the complete specification
of the behaviour of the Style menu, including the behaviour of the individual
menemes as suggested in Figure 4. The Style item is marked with a ‘required-
choice’ symbol, implying that there must always be a valid choice present in
this menu. Taken together with the fact that the mutually exclusive alternative
to Plain Text is a virtual meneme {Fancy Text}, this proscribes the deselection
of Plain Text by direct excitation, because there is no single alternative that can
be automatically selected in its stead. It further specifies that (in order to satisfy
the required-choice constraint) when {Fancy Text} is deselected (i.e. no valid
selection is present in that subgroup) then Plain Text will be automatically
selected by indirect modification. However, because the virtual meneme
{Indexed} is not tagged with a required-choice, then Superscript and
Subscript can both be directly selected and deselected, and when one is dese-
lected, it does not automatically select the other.

From this analysis, it can be seen that the complete behaviour of the indivi-
dual menemes of the Style menu can be derived from the 1.C description shown
in Figure 10. For example, that direct excitation is able only to select Plain Text
and not to deselect it, is implied by the LC diagram without the fact being
explicitly stated. It is a consequence of the desired menu structure rather than a
basic design assumption. In a similar way Bold is seen to be bistable under
direct excitation, another consequence of the desired structure. This suggests
that there are different meneme types, according to their individual behaviour,
a fact aliuded to earlier in the discussion of the meneme model of Figure 3.

Apperley and Spence 61

Although the basic meneme is bistable under direct excitation, syntactic con-
straints will often restrict this behaviour to select-only, as in the case of the
Plain Text meneme above, and there are situations in which deselect-only,
monostable, or even passive behaviour of a meneme may be required under
direct excitation (Apperley, 1988).

With the LC notation, the type of an individual meneme js determined by its
context. By default, menemes will be bistable, unless they are members of a
required-choice mutually exclusive set, in which case they will generally be
select-only. Presentation detail is a part of the context (see the next section), and
headers to pull-down menus may be monostable by implication (that is, they
revert to their deselected state automatically when the associated activity is
completed). It is possible, and indeed sometimes desirabie, to override these
implied types, and facilities for this have been provided in the notation (Apper-
ley, 1988). However, it must be remembered that much of the power of Lean
Cuisine resides in the fact that it takes care of such details, generally making
them not of immediate concern to the user/designer.

Towards the direct execution of Lean Cuisine

The LC notation that has just been detailed can be used to describe a menu
dialogue at the highest level, that of the dialogue designer. Although Lean
Cuisine makes no claim to be more than a design aid at the present time, it is
worth investigating the possible direct implementation of menus using this
technique, and in particular, the possible role of Lean Cuisine as the dialogue
specification component of a UIMS (user interface management system). The
diagram form, as shown in Figure 10, contains no presentational or semantic
information, nor does it make any statement about underlying control models.
As Green (1986) has suggested, it is desirable that the dialogue control compo-
nent of a UIMS should closely follow the designer’s model of the user interface.
In the next two sections, a possible control model is discussed, and a textual
representation of the LC tree is proposed which is amenable to the inclusion of
presentational and semantic information.

Event-response system model
As it forms a complete description of the manner in which the menu or system
of menus is to behave, an LC diagram could obviously be transformed into one
of the more familiar dialogue descriptions, such as a transition network, and
then implemented using available tools. However, the LC notation implicitly
concerns flags associated with each meneme, real or virtual, and the events or
excitations that modify these flags, rather than any concept of individual states
associated with the permissible combinations of menemes. For this reason, the
event-response system model (Hill, 1987) discussed in the earlier section on
event models provides an ideal mechanism to bring Lean Cuisine closer to
implementation.

As was shown earlier, the ERS model for a simple menu bears a close
relationship to the corresponding Lean Cuisine tree diagram. In general there
will be an ERS flag corresponding to each meneme in the diagram, although for

62 Interacting with Comiputers vel 1 no 1 (1289)

consistency with Hill's (1987} notation, it is necessary to use both the normal
flag and its complement (i.e. strictly speaking, there are actually two flags
corresponding to each meneme). There will also be an event associated with
each terminal meneme, corresponding to the direct excitation of that meneme.

Although for the mare complex structure of the Style menu, the refationship
between the LC diagram and the ERS model shown in Figure 7(c) is more
obscure, now that the LC model, with its virtual menemes, has been developed,
it is possible to produce a more derivative ERS model that reflects this structure.
Figure 11(b) shows the response rules for such an ERS model of the five meneme
reduced version of the Style menu, the LC diagram for which is shown in Figure
11(a). To accommodate virtual menemes, some modifications have been made
to Hill’s (1987) model:

® When the flag corresponding to a virtual meneme appears as either a
condifion or an action in a rule, it is to be substituted by an appropriate
Boolean expression, the ‘or” combination of the menemes of its immediate
subtree. The appropriate substitutions for the menu in question are shown
in Figure 11(c).

@ When a flag corresponding to a virtual meneme appears as a condition in a
rule, then that flag is not to be cleared when the rule is invoked.

As can be seen from this example, there will generally be two regular rules
corresponding to each real meneme, representing the selection and deselection
of that meneme by direct excitation. There will also be two e-rules associated
with each virtual meneme that is a member of a mutually exclusive set, but no
rules are generated by mutually compatible virtual menemes. Each virtual
meneme also gives rise to two substitution rules.

58

b: 8- B b:B—B Fi=B+I14+X
ir T— |] F = BIX
wlU-uUl wU-—-D

U Lt LsLC
pP—PF pPsP

L FP-— P FPpP

a b

Figure 11. (a) Reduced form of Style menu, involving only five real menemes, (b) its
description as an ERS, and (c) substitutions required for virtual meneme flags

>4
cc
rl+

Apperley and Spence 63

In comparing Figure 11 with the simple menu groups of Figure 7, it can be
seen that the first two lines of Figure 11{b), those corresponding to the direct
excitations of B and I, follow a standard pattern for a mutually compatible pair,
as seen in Figure 7(b). Similarly, the third and fourth lines of Figure 11(b),
which correspond to the direct excitations of U and L, follow a standard pattern
for a mutually exclusive pair, as seen in Figure 7{a). The last two lines of Figure
11{b}, which correspond to the direct excitation of P, and to the virtual meneme
{F}, differ from the standard pattern for a mutually exclusive pair because of
the required-choice constraint, and because one of the pair is a virtual meneme.

The ERS model for this five (real} meneme menu comprises a total of 12
response rules. To complete the definition, there is a set of 14 flags (two for each
meneme), a set of 5 events (one for each terminal meneme), and four substitu-
tion rules (two for each nonterminal meneme)}, together with the set 5={P} of
flags initially on. By contrast, as shown in the section on transition networks, a
transition network representation of this menu comprises 12 individual states,
and a total of 60 transition arcs interconnecting them. In fact, in the worst case of
a menu comprising a mutually compatible set of N menemes, the transition
network requires 2V states and Nx2" arcs, while the equivalent ERS model
requires just 2N rules. However, while the effect of increasing the complexity of
the menu syntax (by introducing mutually exclusivity, or further subgroups of
both types) is to reduce the number of states in the transition network represen-
tation because not all of the potential states can occur, it increases the number of
rules in the ERS model because of the virtual menemes introduced.
Nevertheless, even in the case of the relatively complex Style menu shown in
Figure 11(a}, the syntax complexity reduces the number of states by a factor of
only 2.7, and increases the number of rules by only 1.2; the ERS notation
remains relatively economical.

The relationship between the ERS model and the LC notation has been dwelt
upon here for two reasons. Most importantly, both are based firmly on the
notion of an asynchronous set of events and the effect of these on a set of flags
which define a total state, rather than on a set of states and the effect that each
possible action might have on each of these states. In addition, because it is
more formal, the ERS model shows a clear path to the implementation of the LC
notation. Hill {1987) describes an implementation of the event-response system
model as an event-response language (ERL). This language encompasses the
formalism of ERS, but also includes parameters attached to flags and events, and
provides for outgoing events and assignments within the action portion of the
rules. These extensions provide the all-important semantic link between the
interaction devices and the application. However, as it stands at present, ERL
provides a means of implementing asynchronous dialogues within an appli-
cation. The flags and their assoclated parameters are a part of the application
data structure; ERL specifies the syntax of the dialogue and provides the link
with the interaction devices. ERL does not necessarily achieve the functional
separation of application and interface aspired to by the propounders of UIMSs.

Textual representation of Lean Cuisine
Tree structures, such as those used in LC notation, can be readily expressed in

64 Interacting with Computers vol 1 no 1 (1989)

textual form. Figure 12(a) shows a possible list representation of the reduced
Style menu of Figure 11(a). Two menu constructors have been introduced, MC
and ME, to specify respectively the two basic subgroup types, mutually compat-
ible and mutually exctusive. Each menu subgroup comprises a list of three
components; the header, the constructor, and the list of component menemes.
Any one of the component menemes may itself be a menu subgroup.

Presentation information can be relatively easily added to such a notation;
there may be style information for menemes (icon, text, etc} and for menus
(pull-down, pop-up, etc). Although in the interests of functional separation of
the application and the interface, there are arguments for specifying this pres-
entation separately from the menu structure, the two could be combined as
suggested in Figure 12(b). This approach has the advantage, from the dialogue-
designer’s point-of-view, that all relevant information about a menu or a
meneme is contained in a single description. A system of menus, such as that
shown in Figure 9, can also be represented in this way. A possible represen-
tation including menu styles (but not meneme styles) is shown in Figure 12(c).
In all three examples shown in Figure 12, one is reminded of Hoare's (1978)
comment that ‘A design for a programming language must necessarily involve a
number of decisions which seem to be fairly arbitrary.’

Two forms of semantic link can be provided to the application; both will in
general be necessary. The first of these is the state variable record, the collection
of all of the meneme state flags and any associated parameters as suggested by
Hill (1987). This ensures that the application (or the set of application functions)
can be constantly aware of the detail of the current menu states. The second
form of semantic link is provided by allowing the association, with any
meneme flag, of an invocation of an application function. It should be noted
that in many cases it will not be necessary to invoke an application function

(S5 ME(P*,({F},MC,(8,L.({X}.ME,(U.LM))

a
{5%:"Siyle",
ME,(P*:“Plain Text",
{{Fh
C.(B:"Bold”,
[:"Italic”,
(X}, .
ME,{U:“Superscript”,
L:"Subscript”))})}):puil-down
b
{A,
ME,{(B,ME,
(D.E,F)):pull-down,
"G H, L)) pull-down
y:menu-bar

c

Figure 12. (a) List representation of LC tree diagram of Figure 11{a), (b) the same list
with presentational information included, and (c) system of menus as described in
Figure 9

Apperley and Spence 65

when a meneme changes state; the change of state may be the only action
required. Terminal menemes will usually have some direct application conse-
quence, causing a command to be executed or a parameter to be modified.
However, nonterminal menemes may merely serve to provide access to lower
level menus, so that their semantic function may already be established within
the menu syntax description, and require no application action. Application
links can be added to menemes in the list notation of Figure 12, in a manner
analogous to that of the presentation information (Apperley, 1988).

This discussion assumes that there would be some form of UIMS in overall
control of the system, to which the application functions were subservient. The
relative merits of this model for a UIMS have been discussed extensively
elsewhere (Gallop, 1987; Pfaff, 1985), and are essentially still unresolved. It is
sufficient to say, however, that in a UIMS, the Lean Cuisine notation could be
used to specify the control structure, the presentation detail (which it is antici-
pated would be derived from a library) and the semantic links to the
application.

Conclusions

This paper has analysed the internal structure of computer display menus, and
has developed a syntax or grammar of menus. Following from this, the general
inadequacy of existing dialogue description techniques for the design of menu-
based systems has been discussed, leading to a proposal for a diagrammatic
notation: Lean Cuisine. This notation not only clearly specifies the structural
information, but can also be extended to encompass the semantic and presenta-
tional details, showing the way to a possible direct execution. A more extensive
example of the Lean Cuisine notation in use, one which includes a supporting
design methodology, has also been produced (Apperley, 1988).

Fundamental to the Lean Cuisine technique is the notion that, at least in the
early stages of the design, a major goal is to separate the dialogue description
itself from the detail of its implementation. The design study mentioned
(Apperley, 1988) demonstrates the way in which the notation provides a grace-
ful evolution from generic design to specific implementation. Lean Cuisine is a
tool for the designer, and throughout the design cycle it concentrates on the
desired interface behaviour rather than the required underlying processes, and
unnecessary early intrusion of implementation details are avoided.

While it is acknowledged that a design notation for menu dialogues
addresses only a part of the total user interface management issue, the analysis
leading to the notation provides an important understanding of the problems of
menu specification and the more general description of direct manipulation
interfaces. In the effort to produce UIMSs that ease the development burden of
highly interactive direct manipulation systems, developers must be wary of
temptation to progress too far too soon. It is very important that before attempt-
ing to construct tools, the tasks that the tools are to assist with are fully
understood. For example, if an ill-equipped plumber was observed attempting,
unsuccessfully, to disconnect a pipe using a hammer, it might be suggested that
a heavier hammer be provided. What is required, of course, is a better under-

66 Interacting with Computers vol 1 no 1 (1989)

standing of the problem, which might reveal that a more appropriate tool was a
gpanner.

Further, it is suggested that not only are menu systems fundamental to the
direct manipulation model, but that the approach taken in Lean Cuisine could
be extended to cover the other interactions of a direct manipulation system. In
developing the event-response language, Hill (1987) has proposed that para-
meters be associated with flags. In a similar way, parameters could be asso-
ciated with menemes in Lean Cuisine, so that an interaction object, such as a
scroll bar, could be treated as a single parametrised meneme, When the meneme
was selected, its value would be able to be adjusted (by direct manipulation},
and this value would be both passed back to the application and reflected in the
current appearance of the meneme. The basic action of selection maps directly
into the meneme model, and other more general direct manipulation actions,
such as positioning and dragging, can aiso be regarded as ‘selection + para-
meter modification” actions. Thus, with further development, LC notation could
become a basic design tool for direct manipulation interfaces.

References

Appetley, M.D. (1988) Tap: a menu interface design study using the Lean Cuisine
notation’ Information Engineering Report #88/2 Department of Electrical Engineering,
Imperial College, London, UK

Apperley, M.D. and Spence, R. (1983) 'Hierarchical dialogue structures in interactive
computer systems’ Seftw. Pract. Exper. 13, 777-790

Borufka, H.G., Kuhlmann, HW. and ten Hagen, P.J.W. (1982) ‘Dialogue cells: a
method for defining interactions’ IEEE Comput. Graph. Appl. 2, 5, 25-33

Brown, [.W. (1982) ‘Controlling the complexity of menu networks’ Commun. ACM 25,7,
412-418

Browne, D.P., Sharrat, B.D. and Norman, M.A. (1986) ‘The formal specification of
adaptive user interfaces using command language grammar’ CHI ‘86 Conf. Proc. 256-260
Cardelli, L. and Pike, R. {1985) ‘Squeak: a language for communicating with mice’
Comput, Graphics 19, 3, 199204

Cockton, G. (1985) ‘Three transition network dialogue management systems’ in
Johnson, P. and Cooke, S. (eds) People and computers: designing the interface Cambridge
University Press, UK, 138-147

Field, G.E. (1988) ‘Navigation of menu-accessed information space: psychological exper-
imentation in human-computer interaction’ PRI} Thesis University of London, UK
Flecchia, M.A. and Bergeron, R.D. {1987) ‘Specifying complex dialogs in ALGAE’ CHI +
GI '87 Conf. Proc. 229-234

Foley, J.D. and Wallace, V.L. (1974) ‘The art of natural graphic man~machine conver-
sation” Proc. [EEE 62, 462-471

Gallop, J.R. (1987) ‘User interface management and graphics standards’ Inf. Seftw.
Technol. 29, 4, 202206

Giroux, L. and Belleau, R. {1986) "What’s on the menu? The influence of menu content
on the selection process’ Behav. Inf. Tech. 5, 2, 169-172

Green, M. (1985) ‘“The University of Alberta user interface management system’ Comput,
Graphics 19, 3, 205-213

Green, M. (1986) ‘A survey of three dialogue models’ ACM Trans. Graphics, 5, 3, 244-275
Hemenway, K. (1982) ‘Psychological issues in the use of icons in command menus’ Proc.
CHI ‘82 Conf. Human facters in Computer Systems 20-23

Apperley and Spence 67

Hill, R.D. (1986) ‘Supporting concurrency, communications and synchronization in
human-computer interaction — the Sassafras UIMS’ ACM Trans, Graph. 5,3, 179-210
Hili, R.D. (1987) ‘Event-response systems — a technique for specifying multi-threaded
dialogues’ CHI + GI ‘87 Conf. Proc. 241-248

Hoare, C.A.R. (1978} ‘Communicating sequential processes” Comm. ACM 21, 8, 666-677
Hutchins, E.L., Hollan, J.D. and Norman, D.A. {1986) 'Direct manipulation interfaces’
in Norman, D.A. and Draper, S.W. (eds) User centered system design Lawrence Eribaum
Associates Inc, 87-124

Jacob, R.J.K. (1983) ‘Using formal specifications in the design of a human—computer
interface’ Commun. ACM 26, 4, 259-264

Jacob, R.J.K. (1985) 'A state transition diagram language for visual programming’ IEEE
Computer, 18, 51-59

Jacob, R.J.K. (1986) ‘A specification language for direct manipulation interfaces” ACM
Trans. Grap. 5, 4, 283-317

Kasik, D.}. (1976) ‘Controlling user interaction’ Comput. Graphics 10, 2, 109-115

Kieras, D. and Polson, P.G. (1983) ‘A generalised transition network representation for
interactive systems’ Proc. CHI “83: Human Factors in Computer Systems (oston, MA, USA)
103-106

Kilgour, A. (1987) “Theory and practice in user interface management systems’ Inf. Softw,
Technol. 29, 171-175

Koivunen, M-R. and Mantyla, M. (1988) ‘Hut Window: an improved architecture for a
user interface management system’ IEEE Conmput. Graph. Appl. 8, 1, 43-52

Lieberman, H. {1985) ‘There’s more to menu systems than meets the screen’ Comput.
graphics 19, 3, 181-189

MacLean, A. {1987) ‘Human factors and the design of user interface management
systems: EASIE as a case study’ Inf. Softw. Technol. 29, 4, 192-201

Miller, D.P. (1981} "The depth/breadth tradeoff in hierarchical computer menus’ Proc.
25th Annual Meeting of the Human Factors Society 296-300

Newman, W.M. (1968) ‘A system for interactive graphical programming’ Proc SJCC,
AFIPS Conf. 32, 47-54

Norman, K.L. and Chin,].P. (1988) ‘The effect of tree structure on search in a hierarchi-
cal menu selection system’ Behaw. Inf. Tech. 7, 51-66

Palmer, T.R. (1987) ‘GRAPE programming environment’ Inf. Softw. Technol. 29, 219-225
Perlman, G. {1984) ‘Making the Right Choice with Menus’ Proc. INTERACT ‘84: 1st IFIP
Conf. o Human-Cowmpuler Interaciion orth-Holland, Amsterdam, Holland, 291-295
Pfaff, G.E. (ed) (1985) User interface management sysfems. Springer-Verlag, Berlin, FRG
Reisner, P. (1981) ‘Formal grammar and human factors design of an interactive graphics
system’ IELE Trans, Softw. Eng, SE-7, 2, 229-240-

Reisner, P. (1982} ‘Further developments toward using formal gramumar as a design tool’
Proc. CHI '82 Conf. human factors in Computer Systems 304-308

Shneiderman, B. (1982) ‘Multiparty grammars and related features for defining interac-
tive systems’ JEEE Trans. Syst. Man and Cybern, SMC-12, 2, 148-154

Shneiderman, B. (1987) Designing the user interface: strategies for effective human-computer
interaction Addison-Wesley, Reading, MA, USA

Tocci, R.J. (1980) Digital systems principles and applications Prentice-Hall, Englewood
Cliffs, NJ, USA

Wasserman, A.1. (1985) ‘Extending state transition diagrams for the specification of
human-computer interaction’ IEEE Trans. Softw. Eng. SE-11, 8, 699713

68 Interacting with Computers vol 1 no 1 (1989}

