
302 IEEE TR4NSACTIONS ON CIRCUIT THEORY, VOL. CT-17, NO. 3, AUGUST 1970 

A Generalized Form of Tellegen’s Theorem 

P. PENFIELD, JR., MEMBER, IEEE, :ROBERT SPENCE, MEMBER, IEEE, AKD S. DUINKER, SENIOR MEMBER, IEICE 

Absfract-Among the theorems of circuit theory, Tellegen’s 
theorem is unusual in that it depends solely upon Kirchhoff’s 
laws and the topology of the network. The theorem therefore 
applies to all electrical networks that obey Kirchhoff’s laws, whether 
they be linear or nonlinear, time-invariant or time-variant, reciprocal 
or nonreciprocal, hysteretic or nonhysteretic; the excitation is 
arbitrary, and the initial conditions are also immaterial. When 
specific assumptions are made concerning the network elements, 
the excitation, and the initial conditions, Tellegen’s theorem 
reduces to many useful network theorems. 

In this paper a generalized form of Tellegen’s theorem that allows 
the efficient derivation of new results is presented. A special form- 
the “difference form”-of this theorem is shown to be of particular 
value, and also capable of simple expression in terms of wave 
variables. The application of the generalized form of Tellegen’s 
theorem is illustrated by an example. 

I. IN'I'RODUCTION 

I? 

ROM time to time in a particular field there may 
be developed a theorem of exceptional value and 
versatility, which is simple and general, and aids 

the derivation of known results as well as pointing the 

wa,y to new ones. In circuit; theory, Tellegen’s theorem 
[l]-[3] is of this nature.’ It states that if i:, i; . . . i: are 
the branch currents of a b-branch network N’, and 
0” 1 > vi) . . . v:’ are the branch voltages of another b-branch 
network N”, where N’ and N” have a common linear 
graph but may otherwise be different, then 

where the summation is over all branches ((Y) of the 
network. The sign convention adopted for branch volt- 
ages and currents is such that, if N’ and N” were identical, 
the product i’, vL1 would be the instantaneous power 
supplied to the branch. 

Tellegen’s theorem is unusual in that only Kirchhoff’s 
laws are invoked in its proof. The theorem therefore 
applies to all electrical networks that obey these laws, 
whether they be linear or nonlinear, time-invariant or 
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theorem. 

time-variant, reciprocal or nonreciprocal, passive or 
active, hysteretic or nonhysteretic. The excitation is 
arbitrary; it may be sinusoidal, exponential, periodic, 
transient, or random. The initial conditions are also 
immaterial. 

In this paper we present a generalized form of Tellegen’s 
theorem that we believe to be new. We also present a 
new “difference form” of the theorem, and show that 
it is capable of useful and simple expression in terms 
of wave variables. 

II. TELLEGEN'S THEOREM 

Consider a network having b branches, nt nodes, and 
s separate parts. Kirchhoff’s current law places n, - s 
constraints upon the currents, so that only b - n, + s 
currents may be specified independently. All the re- 
maining branch currents may then be found by mean.s 
of the linear relations 

where i, denotes a general branch current, j, are the 
independent currents b - nl + s in number, Bga is the 
(b - n, + s) X b loop matrix of the network, and a! = 
1, 2, .*. b. 

Kirchhoff’s voltage law may also be expressed in 
terms of B,,. For each arbitrary current there is one 
closed path within the remainder of the network that 
does not include any other branch whose current is 
independently specified. Thus there are b - n, + s 
such loops, for each of which Kirchhoff’s voltage law 
may be written as 

C&v, = 0, 
a-1 

where the summation is over all branches in the loop. 
From Kirchhoff’s laws, as expressed by (2) and (3)) 

a simple power theorem can be proved. In fact, because 
its derivation exactly parallels that of Tellegen’s theorem, 
we consider it briefly here. 

Multiplication of (2) by v, yields 

(41 

If this is summed over all LY (that is, over all branches 
of the network), then, because of (3), the right-hand. 
side of (4) vanishes so that 

f: i,v, = 0. (5) 
n-1 

The physical interpretation of (5) is, of course, the 
conservation of energy within a network. Note that the 
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proof of (5), in drawing exclusively upon Kirchhoff’s 
laws, is valid irrespective of the nature of the circuit 
elements or of the excitation. 

Equation (5) can be extended to networks having 
two states. By different states of a network we mean 
the currents and voltages pertinent.to diierent excitations, 
different element types or values, and/or different initial 
conditions, but the same topology and branch numbering. 
In other words, the two states of a network may be 
thought of as the actual states of two different networks 
that have the same topology. Kirchhoff’s laws apply 
to each state. Thus, for one state of the network, we 
can write 

and, for the other state, 

c B,q&’ = 0, (7) a 

where single and double primes are used to distinguish 
the two network states. In (6) and (7) the term B,, 
appears unmodified because the two states have the 
same topology. The same steps that led from (2) and 
(3) to (5) now lead from (6) and (7) to 

F i&v’,’ = 0. 

If some branches are, in fact, ports of the network, the 
products associated with the ports can conveniently be 
placed on the opposite side of the equality sign to yield 

C i’v” = cl OL 

where a! and p now denote internal branches, and ports, 
respectively.’ This equation may be termed a “quasi- 
power theorem” [5]. Equation (8) is the theorem originally 
presented by Tellegen [l], [a], and has since been known, 
deservedly, as Tellegen’s theorem. Valuable though it 
is, it is a special case of a more general form of the theorem 
to be derived below. 

III. GENERALIZEDFORM OFTELLEGEN'S THEOREM 

The generalized form of Tellegen’s theorem will be 
expressed in terms of “Kirchhoff operators.” The purpose 
of these operators is to derive, from one set of currents 
(or voltages) that obeys Kirchhoff’s current (or voltage) 
law, another set of quantities that obeys the law. For 
example, if the set of currents {i,(t) ] obeys Kirchhoff’s 
current law, then so do their time derivatives { di,(t)/dt). 
Thus, one example of a Kirchhoff current operator is 
differentiation with respect to time. Another is the Fourier 
or Laplace transform. Similarly, an operator is called 
a Kirchhoff voltage operator if, when operating upon 
a set of voltages that obeys Birchhoff’s voltage law, 
it generates a set of branch “voltages” that also obeys 
this law. The term “Kirchhoff operator” will be employed 

to mean either a Kirchhoff current operator or a Kirchhoff 
voltage operator, whichever is appropriate in the context. 
Many Kirchhoff operators, including the examples quoted 
above, are both current and voltage operators but, as 
will be shown later, this is not always the case. 

Let A’ be a Kirchhoff current operator whose effect 
upon the set of branch currents i, of a b-branch network 
is the generation of a new set of b branch “currents” 
h’i, that obeys Kirchhoff’s current law. Similarly, 
let A”, a Kirchhoff voltage operator, operate upon the 
set of branch voltages v, to generate a new set of branch 
“voltages” A”v, that obeys Kirchhoff’s voltage law. 
For a network with ports it then follows immediately 
from (9) that 

c A'i,A"v, = c A’i,A’v, (10) 

where i, and v, are the port currents and voltages, re- 
spectively, and the indices a! and p are over all the 
branches and ports of the network. This generalized 
form of Tellegen’s theorem holds for any Kirchhoff 
operators A’ and A” and, because it is derived solely 
from Kirchhoff’s laws, is valid for any constitutive 
laws of the elements, for any form of excitation, and for 
any initial conditions. Either or both of the Kirchhoff 
operators may, in fact, consist of a sequence of Kirchhoff 
operators applied in any order that makes sense. 

In the examples quoted earlier in this section, the 
Kirchhoff operator was applied separately to each of 
the branch currents or voltages. But in general the 
operators can be applied to the whole set of currents or 
voltages. Thus, an example of a topologically dependent 
Kirchhoff voltage operator is that which selects the 
differences between the squares of the nodal potentials 
to form branch “voltages” that obey Kirchhoff’s voltage 
law. This operator, incidentally, is not a Kirchhoff current 
operator. 

Nevertheless, many of the operators used in practice 
have the property that in generating, say, A’i,, the 
other branch currents i,, i,, i4, etc., are ignored. In this 
event the operator A’ can also be applied to the inde- 
pendent currents ja. Thus, if A’ is a Kirchhoff current 
operator, the current law can be expressed as 

A’i, = F B,,(A’j,). (11) 
Substitution of (2) into (11) then yields 

A’( c B,&) = F BdA’js). (12) 

Because this condition must hold for arbitrary j,, it 
follows that A’ must be linear. Since B,, is real, it is not 
necessary that A’ operate in a linear way on complex 
numbers. Indeed, complex conjugation is, within our 
sense of the term, a linear operator.3 Although linear 
operators find frequent use in the application of the 
generalized form of Tellegen’s theorem, we emphasize 

*Use of the convention that i,vP is the instantaneous power 
entering a port ensures the absence of a minus sign in (9). 

3 The use of linear operators does not restrict the theorem to 
linear networks. 
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that many Kirchhoff operators exist that are not linear. 
If A’ operates on the entire set of currents { ia} rather 

than on each i, individual!ly, (11) is meaningless because 
the effect of A’ operating on the independent currents 
j, has not been defined. However, if A’ is a Kirchhoff 
current operator, then. the set of “currents” (A’;,) 
obeys Kirchhoff’s current law, and hence can be written 
as the matrix product of .B,, times its own set of inde- 
pendent “currents.” That is, a formula like (11) is valid 
with A’j, replaced by some suitable, quantities. 

It can be useful to express Tellegen’s theorem in 
vector-space notation. In a b-branch network, let w 
and 9 be the sets of all b-dimensional vectors that obey 
Kirchhoff’s voltage and current law, respectively. Then, 
Tellegen’s theorem (8) is a statement that ‘u and SJ are 
orthogonal subspaces of b-dimensional vector space. 
That is, any vector in ‘u is orthogonal to any vector 
in 9. If an operator A’ maps a b-dimensional vector that 
obeys Kirchhoff’s current la,w onto the same space 9, 
and an operator A” sim.ilarly maps a b-dimensional 
vector of ‘u onto U, then the generalized form of Tellegen’s 
theorem (10) results. 

In many applications of the generalized form of 
Tellegen’s theorem it is simpler to apply what is called 
the difference form of the theorem [3]. This form also 
permits the simple expression of Tellegen’s theorem in 
terms of wave variables. Its derivation is simple: if the 
roles of A’ and A” in (10) are interchanged and the result 
is subtracted from (lo), we obtain 

CC A’i, A’%, - A”i, A%,) 
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= c (A’;,A”u, - A”i,,h’~~), (13) 

which we shall refer to as the difference form of Tellegen’s 
theorem.4 Clearly, the operators appearing in (13) must 
be both Kirchhoff current operators and Kirchhoff 
voltage operators. 

IV. WAVE: VARIABLES 

Consider some branch al’ the network having voltage 
v, and current i,. Using any real positive quantity 
2: having the dimension of resistance and known as 
the normalization impedance, we define [6] an incoming 
wave a cL and an outgoing wave 2, a by 

(14) 

(15) 

The waves a, and b, are functions of time, although 
we can define frequency-domain functions by taking 
their Fourier transforms. In general, wave variables 
can be defined at each branch and each port, and there 
is no requirement that all normalization impedances 
be equal. If the variables i, and v, appearing in the 

4 See also the conclusion of [4]. 

generalized form of Tellegen’s theorem are expressed, 
from (14) and (15), in terms of wave variables, the resu1.t 
is somewhat unwieldy. If the same substitutions are 
made in the difference form of the theorem (13), however, 
we obtain 

z.z 2 c (A’a,A”b, - A”a,A’b,) 
a 

= c (A’i,A”v, - A”i,A’v,) 
P 

= 2 c (A’a,A”b, - A”a,A’b,). (161 
P 

Again, the operators A’ and A” must be both Kirchhof 
current operators and Kirchhoff voltage operators. 
Note that the wave variables appear in the same manner 
as the currents and voltages, so that many of the results 
that can be derived from Tellegen’s theorem for immit- 
tance matrices also hold for scattering matrices. Note 
also that the contribution for both the ports and the 
internal branches may be evaluated, at will, in terms 
of voltage and current variables or wave variables. 
Thus we might, for example, equate the first and fourth 
summations in (16), so that a sum of wave-variable 
terms associated with the ports is equated to a sum OF 
voltage-current terms associated with the internal 
branches. 

V. EXAMPLE 

.The generalized form of Tellegen’s theorem, and the 
use of wave variables, can be illustrated by a theorem 
concerned with the sensitivity of the driving-point 
impedance of a linear one-port to small variations of 
its internal, nonreciprocal elements. 

Consider a one-port possessing a driving-point im- 
pedance 2, and containing linear reciprocal and now 
reciprocal elements described by their impedance matrices 
[Z,,], Fig. l(a). Denote the complex port voltage and 
current at a frequency w by V and I, respectively; the 
same symbols, with appropriate subscripts, are employed 
for internal variables. Besides the original network, 
consider another network with the same topology but 
whose elements are described by a branch-impedance 
matrix [z”tis], which is the transpose of the branch- 
impedance matrix [Z,,] of the corresponding element 
in the original network, Fig. l(b). We denote the second 
network by a superscript tilde (“). Thus, 

z,, = z,,. (1’7) 

Application of the difference form of Tellegen’s theorem 
(13), in which A’ selects the second network and A” 
selects small variations in the first network, yields 

r” 6V - P SI, = c (7, 6V, - P, 61,). (18) a 

Now it can easily be shown that the driving-point im- 
pedances of the two networks are identical (i:e., 77 = Z); 
a relation which, when combined with (17) and (18), 
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(a) (b) 
Fig. 1. (a) A linear one-port network. (b) Its “adjoint.” 

yields [3] 

The second “transpose” network introduced to allow 
the simple expression or calculation of driving-point 
sensitivity is often known as the “adjoint” or ‘(inter- 
reciprocal” [7] of the original network, atid has recently 
enjoyed renewed popularity as the basis of a method 
of automated circuit design [S]. 

If preferred, the left-hand side of (18) can be expressed 
in terms of wave varia.bles to yield 

where 6I’ is a small change in the port reflection co- 
efficient, and A and B are the complex amplitudes of 
the incident wave in the network and its adjoint, re- 
spectively. 

VI. CONCLUSIONS 

A generalized form of Tellegen’s theorem has been 
presented. The value of the theorem lies in the fact 
that it is valid for all electrical networks, in the wide 
available choice of operators and, in the difference 
form, in its alternative expression in terms of wave 
variables. An example was presented to illustrate an 
application of the theorem; many others exist [3].’ 
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Power-Series Equivalence of Some Functional 
Series With Applications 

MARTIK SCHETZEN, MEMBETt, IEEE 

~lbstracl-Iu this paper, we show that the Laplace transform of 
the expansion h(t) = cE=.,-, cng,(t) for some important sets gn(t) is 
equivalent to a power-series expansion. Techniques based on this 
result are presented for obtaining the coefficients c, as those of 
a power series; also, methods are presented for obtaining the 
functional series inverse. The set of Laguerre functions is discussed 
in detail and, using the power-series equivalence, the truncation 
error is obtained. The application of the power-series equivalence 
to the summing of series is shown and illustrated with the Neumann 
series. Finally, the extension of the power-series equivalence to 
the expansion of functions of several variables is given. The areas for 
which the techniques developed are relevant include the analysis 
and design of signals and the identification and synthesis of pro- 
cesses and systems. 
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I. INTRODUCTION 

N ANALYSIS, it often is desirable to expand a 
given function h(t) in terms of a set of functions 
54) as 

h(t) = 2 C”g”(t). (1) n=cl 

If the set is orthogonal, then the coefficients c, can be 
determined individually by integration. However, the 
integrals may not be simple to evaluate and properties 
among the coefficients C, not evident. For some important 
sets of functions, however, the Laplace transform of (1) 
is equivalent to a power series. The equivalence is pre- 
sented in this paper. Its significance is that the well- 


