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Abstract: This paper addresses the problem of design centering; that is, the maximisation of manufacturing
yicld by suitable choice of nominal component parameter values while the tolerances and form of the prob-
ability density function of the parameters are assumed fixed. In the technique discussed, Monte Carlo analy-
sis is performed for a particular set of nominal values. The results of the analysis are then used both to
estimate vield and to choose new nominal values which are expected to increase yield. The procedure is
repeated until no further increases in yield occur. The heuristic algorithm employed is based on the relative
positions, in component space, of the centres of gravity of the pass and fail circuits as identified by the
Monte Carlo analysis. The effectiveness of the procedure is illustrated for a number of circuit examples
ranging from seven to forty-three toleranced components. Experience strongly suggests that the number of
iterations required is independent of dimensionality (the number of toleranced components). Unlike other
methods of design centering, the method does not require assumptions regarding the convexity or connec-
tivity of the tegion of acceptability. Finally, to moderate the computational cost of iteratively performing
Monte Carlo analysis, special sampling schemes are employed which reduce the number of sample circuits

required to be analysed by each Monte Carlo analysis.

1 Introduction

In the design of a mass-produced circuit it must constantly
be borne in mind that the component parameter values are
subject to statistical spreads due to uncertainties in the
component manufacturing process. As a consequence, the
properties of the manufactured circuit will exhibit statisti-
cal variation from one sample to another. Indeed, the
extent of this variation may be such that some of the
manufactured circuits fail to meet the specifications placed
on their properties by the customer. That fraction of the
manufactured circuits which meets the specilications is
referred to as the manufacturing yield.

It is clearly useful to be able to maximise the yield, and
the principal method for doing this is called ‘design center-
ing’. In this approach, component tolerances are lelt
unchanged but their nominal values are chosen more
appropriately. After so doing, it may be possible further to
reduce the unit cost of the manufactured circuit by the
assignment of new component tolerances: whether the
tolerances are increased or decreased will depend upon the
cost/tolerance relationship of each component.

Since design centering will normally precede tolerance
assignment, or may in any case be the only realistic means
of enhancing the yield and reducing cost (e.g. integrated
circuits, mechanical filters), it is an important technique in
its own right and is the subject of this paper.

Several deterministic methods of design centering have
been pro]c)os.cd."2 These, however, require the identi-
cation of combinations of component values such that the
circuit just fails to meet the performance requirements, a
characteristic responsible for the computational cost
becoming prohibitive if the number of tfoleranced
components exceeds about five, Additionally, deterministic
methods suffer from limitations upon the nature of the
performance specifications. By contrast, the method
proposed in this paper employs the statistical exploration
approach and, as a consequence, does not suffer from the
same limitations. Moreover, it is equally valid for nonlinear
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as well as linear circuits, and is easy to implement in soft-
ware.

In the approach to design centering described in this
paper, the yield is first estimated by a conventional Monte
Carlo analysis. This analysis constitutes a statistical explo-
ration of a region defined by component nominal values
and tolerances, within the multiparameter component
space whose axes correspond to the toleranced parameters.
However, this calculation is used not only to estimate the
manufacturing yield: the spatial information it gencrates is
also used to decide on a new location, in multiparameter
component space, for the nominal component values. The
process is then repeated until no further increase in yicld is
sought.

2 Design centering

Consider a circuit whose behaviour is determined by K
toleranced component parameters. The parameters may be
associated on a one-to-one basis with individual
components (e.g. R, L, C) or may constitute part of a
parametric model of a device such as a transistor or an
operational amplifier. We denote by the vector P the
values of these K parameters, viz:

P = pips,....Pxk

and we employ a superscript ‘o’ to denole the vector of
nominal parameter values:

The tolerance vector T =1,1,,.
ances on the parameters, such that

WP —4) <= p; <@ty

.., 1), defines the toler-

)l'-“ Is---vK (1)

Consider also that the circuit is subject to m performance
requirements of the form

£ <HPY < F, .m )

The constants f; and f; are, respectively, the upper and
lower allowable limits on the ith performance function of
the circuit. The performance function f;(P) may be any
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quiescent-, [requency- or time-domain property of the
circuit.

Simultaneous  consideration  of  the toleranced
components, the circuit’s performance and the specifi-
cations is aided by reference to a multiparameter
component space, each of whose axes is associated with a
toleranced component. The tolerances on the parameters
define a tolerance region R4 which, for the simple but
illustrative case of two uncorrelated components, is a
rectangle (Fig. 1). Thus, a vector P satislying exprs, 1,i.e. a
manufactured circuit, is represented by a point within R,
In the same multiparameter component space, the region of
acceptability R, contains those parameter values which,
together, describe a circuit which satisfies the specifications
(expr. 2). As illustrated in Fig. 1, the boundary of R4 is
typically composed of a number of segments, cach associ-
ated with a different performance specification. In most
cases, the boundary will be irregular, may contain both
concave and convex scgments, and is unsuited to analytic
description.

If the region Ry does not lie wholly within the region of
acceptability R4, as is the case in the illustration, then it
is likely that some of the manufactured circuits will not
meet the specifications. These unacceptable circuits are
represented by the hatched areas in Fig. 1.

The yield Y is the expectation that a manufactured
circuit will meet the specifications. In the illustration of
Fig. 1, if all values ol a component p; between its limits
(pf —1;) and (p{” + t;) are cqually probable, and if there is
no correlation between component values, then the yield ¥
is the area of R lying within R 4 (i.e. Ry MR 4), expressed
as a fraction of the area of R4, For more than two toler-
anced components, the areas become hypervolumes. In the
case where the distribution of component values is not
uniform andfor when component values are correlated,
every point in R, may be considered to have a weight
proportional to the value of the component probability
density function at that point. The yield may then be
taken to be the ratio of the weighted volume of (Rp N R L)
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Fig. 1 Tolerance region Ko and region of geceprability R 4 in

multiparameter component space

Hatched area is associated with circuits that fail the specilication
The result of centering B within R 4 is shown as broken lines

IEE PROC., Vol 127, Pr. G, No. 6, DECEMBER 1980

to that of Ry. Yield is defined more rigorously as a multi-
dimensional integral in Appendix 10.1.

The problem addressed in this paper is that of maximis-
ing yield through variation of the nominal parameter
values P, while keeping tolerances T constant:

Maximise ¥ (P°, T) by choice of P 3)

Such a maximisation can be interpreted geometrically as
the maximisation of the intersection R M K 4 by centering
R4 within R4 (Fig. 1). Most of our attention will be
directed to satisfying expr. 3 for those situations in which
components are uniformly distributed and uncorrelated.
As explained later, other cases will often be handled simply
and adequately in the very last iteration of the algorithm
to be described. The changes in nominal values typically
encountered in design-centering procedures are rarely of
a magnitude such that permissible limits to nominal values
(also called box constraints®) are violated, Therefore,
expr. 3 can safely be treated as an unconstrained opti-
misation problem.

3 Centres of gravity algorithm

Viewed very simply, a design-centering procedure can be
considered to comprise two tasks:

(a) estimation of yield ¥

{(b) choice of the new nominal point P°.

Although (@) will later be extended to include an estimate
of the sign of any change in Y consequent on a new choice
of P?, we shall first consider the straightforward estimation
of yield and the choice of a new P°.

For an increasing number ol toleranced components,
and hence an incressing dimensionality of component
space, it is impracticable to estimate yield by means of a
deterministic numerical integration method. We therefore
employ, instead, a conventional Monte Carlo analysis which
constitutes a random sampling — or ‘statistical cxplo-
ration’ — of the tolerance region R4. Now, Monte Carlo
analysis is conventionally regarded as an expensive compu-
tational procedure, whose cost is proportional to the
number of random sample circuits analysed. It has, how-
ever, the paramount advantage that the number of random
circuit samples required to be analysed for a specific
confidence in the yield estimate is independent of the
number of component parameters describing the circuit. It
is this single property that allows the statistical exploration
approach to design centering to be applied successfully to
circuits containing up to 43 toleranced components.
Moreover, as will be shown later, methods have been
devised for effecting a considerable reduction in the num-
ber of Monte Carlo samples required.

The basis for the choice of the new nominal point P9 is
easily described. Following the Monte Carlo analysis, which
identifies each circuit sample as ‘pass™ or “fail” accordingly,
the centres of gravity of both the pass and fail samples in
component space dare determined. The line joining these
two points (Fig. 2) is then paraliel to the direction in which
P° is to be moved, with the movement occurring in the
direction Gy to Gp, respectively the centres of gravity of
the fail and pass samples. The actual distance moved by
P? is some [raction A of the distance between the two
centres of gravity,

After so moving the nominal point, the process (esti-
mation of ¥ followed by choice of P°) is repeated until
cither 100% yield is obtained or a further increase in yicld
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appears unlikely. Thus, the structure of the design centering
scheme is as shown in Fig. 3. We now discuss the calcu-
lation of the direction of movement of P? and the choice
step size A.

3.1 Direction of movement of P°

Let Gp. the centre of gravity of the pass circuils, be defined
by the corresponding values of the component parameters:

Gp = 8p | 8pys- -2 8Py

An estimate of Gp can then be made as follows. Let Np and
N be the number of pass and fail circuits respectively.
Also Tet py; denote the value of the 7th component par-
ameter of the j th sample circuit. Then

I . P
gp, = =y Py L= 1. K (4)
'NP pass
cireuits

Similarly for the fail centre of gravity

Gr = &p, &y - SFg
and
I ) :
‘HF":N_ Z Pipy 1 7 . (5)
Y fail
circuils

If we denote two successive iterations (i.e. two successive
Monte Cuarlo analyses) by subscripts M and M+ 1, the
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Fig. 2 Relation of movement of nominal point fo ceitres of

eravity of pass and fail circuits

proposed relationship between the old and new design
centres 1s:

P, = P+ MGpy — Gry) (6)

For later relerence we denote by AGy the separation
Gpy — G between the centres of gravity (as shown in
Fig. 2) and by Agy, Agy, ..., Agg the co-ordinates of
AG -
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3.2 Choice of step size

In view of the cost of obtaining a yield estimate by Monte
Carlo analysis, it is inadvisable to perform a unidirectional
search parallel to AGyy and passing through Py to find a
yield maximum. Rather, a single valie of A must be chosen
at each iteration and only discarded if no improvement in
yield appears to be obtained (ie. if Yy = Ygp). Initial
experience suggested values of A between 05 and 1-04
Later, a rule (1o be described below) was formulated which
usually leads to substantial increases in yield, and rarely to
a decrease.

The rule for the choice of A is derived with reference to
Fig. 4 which depicts the tolerance regions ol two successive
iterations: for simplicity, and without loss of generality, a
2-dimensional example is shown. Based on the designation
of the parts of the tolerance regions shown in Fig. 4, the

yields of the two iterations can be expressed as
Yager Vie ucynra (N
Yo = ViauBynra (8)

termination

initialisation analysis

M=1 iteration Monte Carlo

number analysis
P{ nominal Ny sample
component o size
values
Ny sample size )
determined
by designer
advance E’EM K
counter 2

design centering

O _pO.A (G -
Bner =B M Co QFM)}——

Fig. 3 Flow chart for cenrres-of-gravity method of design center-
ng
C
r
B
-0
common aLJM.l nh..m
A points
o® region

& By 9

I

ar

E

g

o

a

RTM
parameter p,

Fig. 4 Common points region (B) containing sainple points from

Ry, that can be reused for RTM+ )
A .- A . VA
ABRp, ORpy  BERT, ORypy C2 Ry O Ry

IEE PROC., Vol 127, Pr. (z, No. 6, DECEMBER 1980




where IV denotes the volume of the region normalised with
respect to the volume (V4 + V) of the tolerance region.
Also we denote by

AYy = Ypyyy — Yy (9)

the difference of the two yields.

We consider now a limit case in which two conditions
hold:

(@) 100% yield can be achieved with the given tolerances

(b) it can be achieved by one step in the iteration.
Condition () implies that

while, for condition (/) to be satisfied
Ve = 1 =Yy (11)

The volume Ve can be expressed in terms of the tolerances
1;, the direction AGy; and step size A as:

K K
_Ej{lzf;‘__l}l(zfi """ “MAZ) = 1—=Yy (12)

In practice, the maximum obtainable yield is often less than
100% and also cannot be achieved in one iteration. In this
case, the equality (eqn. 12) must be replaced by an
inequality to obtain a rule for choosing A:

K K

il:!sz = }_—ll (2= NAg) < 1 — Yy (13)
Since little is known about the shape of typical regions of
acceptability, a more precise rule for choosing X is difficult
to obtain. In view of this uncertainty, and because expr. 13
cannot be rearranged to give A explicitly, we compute Ve
for several values of A (typically between 0-1 and 1-5 in
steps ol 0-1). A value of A which satisfies expr. 13 is then
chosen, although the designer must be prepared to take
corrective action (i.e. a reduced value of A), should the
yield appear to decrease. However, experience has shown
that, as the designer gains familiarity with the algorithm, he
can cxercise effective judgment in the choice of step
length.

4 Confidence of correct yield ranking

In the basic form of the algorithm described above, the
yield Y is estimated at each new location of the nominal
point P as it is determined by the relation of eqn. 6.
However, uncertainty is always associated with the estimate
of yield. For a reasonably large sample size N, the sampling
distribution of the yield estimate provided by Monte Carlo
analysis is approximately normal with a mean of ¥ (the
true value of the yield) and a standard deviation ¢ =
VY(I = Y)/N. The value of Y is not known, of course;
hence, to be able to compute confidence intervals associ-
ated with specific yield estimates, we estimate the standard
deviations as oy =V Y(1 — Y)/N, where Y is an estimate®*
of the unknown vyield ¥. Then we may say, for example,
that the 95% confidence interval for yield is ¥ + 204, For
this reason, an apparent increase in yield may oceur during
an iteration wherein the actual yield suffers a decrease. It is
therefore necessary to pay attention, nol only to the
estimated yield (the quantity of paramount interest), but

*Henceforth, superscript hat denotes estimate of relevant quantity
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also to whether a particular iteration has been worthwhile
in the sense of achieving an increase in yield.

The distribution of AY, (the estimated change in
yield) is the difference between two normally distributed
random variables and is also normal. The variance of
AYy will be given by

Var (A?M) = Vm‘(}"M_] t Va:'(];’MH)—

2 Cov (}}M) }‘}M-r 1) (14)

For illustration, we shall consider AYy to be positive, and
the sampling distribution of AYy; is shown in Fig. 5.

Since we do not know the true value of AY,,, we take
AYy to be the centre of this distribution, and estimate the
variance according to eqn. 14. In this way, we obtain the
confidence of correct ranking. The confidence in the
assertion that AYy is positive is then the (shaded) arca
under the curve 1o the right of the abscissa. Formally, the

area is equal to § + erf (AY/oa yu), where g, ¢ is the

standard deviation of AYy,, ie. Oay =-/Var (AY ), and
erf (+) is the crror function defined as

i
erl (1) = = .fo exp (—x?/2) ux

g~

The error function is a monotonically increasing function.

5 Sampling schemes for reducing computational cost

If straightforward and independent Monte Carlo analyses
are performed at two successive iterations, the covariance
term in eqn. 14 is zero, and quite a large number of samples

H v

LR
! exp - Biv-ths)
Tpypdan 2q2

Y / ay

probability density

1 . erf (A\"Mq;,) b "

Ay yield difference { AYy)

Fig. 5 Sampling distribution of difjerence (aY ) in yicld esti-
mates berween wo successive iferations

at cach iteration might be necessary to obtain a reasonable
confidence of correct ranking. It is therefore important to
seck sampling schemes that will achieve a high confidence
level at an acceptably low computational cost. We now
examine (wo such schemes: briefly, with reference (o
Fig. 5, the ‘correlated sampling scheme’ squeezes the
distribution inwards towards the mean (Fig. 6)., while
the principal objective of the ‘common points scheme is to
shift the mean to the right (Fig. 6). With reference to the
above definition of the error function, since the confidence
of correct ranking increases with increasing value of the
argument of the error function, the two schemes attempt to
increase this argument by either decreasing v, v (correlated
sampling) or by increasing AY (common points). The ideas
behind the two sampling schemes are discussed below
while, in Appendixes 10.2 and 10.3. we list particular
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algorithms incorporating either scheme into the overall
design-centering stralegy.

5.1 Correlated samnpling

The object of correlated sampling is to introduce a positive
covariance (see eqn. 14) between the yield estimates at the
Mth and M+ 1th iterations, thereby reducing vl vy, for
a given sample size, below what would apply to indepen-
dent Monte Carlo analyses. It is effected by using the same
random numbers [or obtaining compouent values for the
sample cireuits ol successive Monte Carlo analyses. In other
words, the samples at cach iteration have the same location
relative (o one another: they are merely shifted, together,
in the same manner that P is shifted.

Broadly speaking, the precision of the estimate of yield
difference is enhanced because the dependence between
the two individual yield estimates is such that, when one
result is overestimated (or underestimated) by sampling
variations, then so is the other one, by roughly the same
amount. A detailed comparison ol independent and cor-
related sampling has been made by Becker.S Although the
correlated sampling scheme has the advantage that it may
be used for any form of component probability density
function (e.g. uniform, bimodal, normal), the scheme to be
described next, although essentially restricted to uniform
parameter distributions. is more efficient: in other words,
for a given confidence ol correct ranking, the common
points scheme requires a smaller number of circuil analyses.

5.2  Common points scheme

The essence ol the common points scheme is that, if the
circuil has already been analysed at a sample point which
also happens to be contained within the new tolerance
region, then use should be made of the information pro-
vided by that analysis. Again, with reference to the 2-
dimensional example (Fig. 4), using the same notation as
before and setting M = 1, it is clear that the samples associ-
ated with Ry in iteration 1, but falling within region B
which is common to Ry, can be employed, together with
new samples taken in rc;fion C, to estimate the yield associ-
ated with tolerance region Ry, . Volume B is referred to as
the common region, and the sample points within it as the
common points.

To appreciate the advantage of the common points
scheme, it is convenient first to consider the concept of
‘partial yield”. For example, of the NV samples generated
within R, assume that NV, fall within region 4 and Np
within region B(N = N4 + Ng). If the number of passes
within region A is V4 p, we can estimate the partial yield of
region A as Y, = N, pfN,. Similarly, the partial yield Yy
of region B can be estimated. The partial yields can then be
used to obtain an estimate of the yield associated with
region Ry according to

}}1 = Py }}A + Vg )‘,Ii (15)

since all volumes are normalised with respect to the volume
of the tolerance regions.

Within the new tolerance region Ry, , samples need only
be generated within region C: these will be distributed
uniformly and for convenience will normally be N4 in
number, so that both Ry and Ry, contain an identical
number of samples. 1" the partial yield of region C is
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estimated as }"C, the yield associated with R’-‘"z can then be
estimated as

Vo = VaVp + VeYe (16)

By reference to equs. 15 and 16, the estimated difference in
yield between tolerance regions 1 and 2 can be writlen as

A}} IIKC)‘/C - V."l }“IA (1?)

or
AY = Ve(Ye— ¥a) (18)

Because the confidence of correctly ranking ¥, and Y, is
identical with that of ranking the partial yields ¥4 and Y,
it is convenient now to turn our attention to the difference
in partial yields (Yo - Y,) denoted by APY. Since the
sampling distributions of the partial yield estimates Yo
and Y, are normal, so will be that of their difference
APY, as is illustrated in Fig. 6. An estimate of APY is then
provided by

M}}/ = }‘}C == }}A (19)
However, from egn. 17, we deduce that
AY = Ve APY (20)

Recalling that Vi is the volume of region ¢ normalised
with respect to the volume of the tolerance region, il is seen
that the true (or estimated) partial yield difference APY
will be greater than (and in practice usually much greater
than) the true or estimated yield difference as is illustrated
in Fig. 6. Since the sample points in A and C are uncor-

correlated sampling
100 samples

independent sampling

100 samples

commeon points scheme
25 samples J'

probabitity
density

_._I - ——— :
0 Ay APy
yield difference

Fig. 6 [llustrating differences between sampling distribution of
vield difference estimator for independent sampling, correlated
sampling and common points scheme

related, the variance oipy of the difference of the
partial yields can be expressed as

ohry = ok, +od, 1)

by reference to eqn. 14. The individual variances appearing
in eqn. 21 can be estimated from

’ Ys(1—7Y :
U%AZLM-"A—I and a;‘}c—

Yel(l — Ye)
Ne

Normally, in view of the smaller number of samples selec-
ted in regions A and € when compared with B, the variance
oapy will be larger than that (o2 ) associated with uncor-
related sampling, as reflected in Fig. 6.

The confidence of correctly ranking the partial yield
estimates, and hence the overall yield estimates, is now
given by:

L+ erf (APY/oppy) (22)
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Compared with uncorrelated sampling, we have increased
both the factor AY (by considering partial yields) and the
standard devialion o, y (there are [ewer samples), but the
overall effect is to increase the ratio. It is unfortunate that
no simple relation connecting the standard deviations g,
and 04 py can be obtained, but it has been found in prac-
tice that the ratio, and hence the confidence of correct
ranking, is enhanced in the common points scheme. It
should also be borne in mind that, even in the limit where
APY[oapy is unchanged, the use of the common points
scheme leads to a considerable saving in computational
eflfort.

6 Circuit examples and results

The effectiveness of the design-centering strategy is demon-
strated by application to three circuit examples, as follows:

6.1 Highpass filter circuit®

The circuit diagram, a typical shape of response and the
performance constraints are illustrated in Figs. 7 and b.
Fig. 8 summarises the results ol applying the design-center-
ing algorithm when tolerances at 5% and uniform p.d.fs

Y N S N—
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47

45|
42

typical shape of response curve
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Fig. 7 Passive highpass filter

a Circuit diagram

Arrows indicate toleranced components
certt T T ;. o ;

Insertion loss is 20 log |V, (jw)/ V| (jw)!

b Performance requirenents

Urequencies tested: 170, 350, 440, 630, 650, 720, 740, 760, 940,
1040, 1800 Hz
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were assumed for all components subject to tolerance. The
95% confidence interval associated with each yield estimate
is indicated, as is the value of step size A chosen alter each
iteration. The common points scheme was used, and the
total number of circuit analyses performed for cach iter-
ation is indicated, together with the conlidence ol correctly
ranking iterates as described in Section 5. The available
sample size was chosen to be 100; hence, for example, at
iteration number two, 71 analyses from the previous
iteration were reused and, for iteration three, 77 were
reused. Monte Carlo analyses ecmploying 500 samples each
were performed using the same design centres as for the
first and last iterations and confirmed the yield increases
suggested by the design-centering strategy.

For the same circuit, Fig. 9 relates to the situation where

l{)(]l-
last
iteration
30|
80r
35%. confidence first
intervals iteration
L70
& 500sample
z Monte Carlo
_; yield
[T, estimates
number of fresh circuit analyses total
100 29 23 10 28 5 195
F'D_
3 °l» contidence of correctly ranking iterates

L 99 99 99 95 91
0 1 1 1 o |
1 2 3 4 5 6
iteration number

Fig. 8 Yield trajectory for lighpass filter assining 5% toleranees
and uniform distributions

1001
o 4
A=03 f!
correlated sampling  /
8o / (Gaussian distributions/
A=05 | ff
701 ff 500sample Monte Carlo
estimate with same
design centre and
= &0H Ggussian distributions
=
T
= 50F A=l common points scheme
(uniform distributions)
number of fresh circuit analysis  total
40000 100 100 100 100 50 A
00 50 34 17 16 INET B
*s confidence of correctly ranking iterates
0L 99 99 90  86=—A
]: 99 39 80 80-—8
8 1 2 3 4 3}
iteration number
Fig. 9 Yield trajecrories for highpass filter, assuming 0% toler-

ances and both Gaussian (A) and unitorm (B) distributions
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the component parameter pdf (L, PV, T) is truncated K-
variate Gzaussian, i.e.

K 1 . .
GP.PT) = ]_[l " exp {—{pi —p)207}  (23)

i=1 U2

for (pf —1) = p; = (P2 + 1)

= () otherwise

and o; = [;{3, say

Whereas such a situation may casily be handled by the
scheme employing correlated sampling, the common
points scheme is not directly applicable. However, in order
to exploit the computational efficiency of the latter
scheme, it was suggested that a satisfuctory approach might
be to assume a unifonn pd.f, to employ the common
points scheme until further yield increases appear unlikely,
and then to switch over lo correlated sampling, and the
correct p.d.l., as in eqn. 23. In other words it was pos-
tulated that there would be insufficient difference between
the design centres associated with the two distributions to
warrant discarding completely the computational advantage
of the common poinis scheme. The upper curve of Fig. 9
illustrates the straightforward application of the correlated
sampling scheme using the p.d.f. of eqn. 23, where all the
components have fixed tolerances which are 10% of their
initial nominal values. The final yield estimate was 94%
after [ive iterations using a total of 500 circuit analyses.
The lower curve refers to the common points scheme,
assuming a uniform p.d.f. with the same tolerances, but
with a change to a single 500 sample yield estimate (of
90%) using the p.d.f. of eqn. 23, following the fifth iter-
ation. The proximity of the final yicld estimates (94% and
90%) suggests that the proposed scheme for handling
nonuniform distributions may well be an effective one.

input stream  delay elements
Uiy l__“““‘--—-ﬂ_

-

& (0'1
multipliers

outputmstre{unU? vV,

Fig. 10 General siructure of transyversal filter

6.2 Transversal filter circuit”

In support of the assertion that the proposed strategy is
effective independently of the dimensionality of the
circuit, we now discuss a circuit comprising 43 toleranced
components. The circuit belongs to a family of transversal
filters” to be manufactured using charge-coupled devices.
The hasic structure of a transversal filter is shown in Fig.
10. The circuil operates on sampled values of an analogue
signal. The input signal is passed through a cascade of delay
elements. The outpui of each delay element is multiplied

266

by a particular coefficient and the multiplied outputs are
summed to form the overall output of the filter. The
response of the circuit for both frequency and time
domains can be summarised as:

Time domain:

K1
Uz{f-) . Z anUIU N DT.-;)
p=10
Frequency domain:
£l s
V'l(]w) = Z‘ lU"pVI{J'F(“)_)'f-’_}mf";
p=0

where T, the intersample time inierval, is related to the
sampling {requency f, as T, = 1/f,.

The filter coelficients o;(i = 0, ..., K — 1) are defined
by a capacitance which is proportional to the area of an
electrode in an integrated circuit.” Owing to the uncer-
tainties of the manufacturing process, the values of these
coefficients are subject to statistical variation.

Design centering was performed on a transversal filter
with 43 variable coefficients. The applicable frequency-
domain specifications are shown in Fig. 11. The nominal
values of the coefficients were in the range - 1 to I and the
largest value encountered was 1. Tolerances were taken to
be £0-01 (i.e. 1% of the largest coefficient) for all coef-
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=
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dB
Fig. 11 Performance requirements for transversal filter
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ficients. In the absence of accurate information about the
statistical distributions of coefficient values, the choice of
uniform distributions was considered prudent for a pre-
liminary atiemptl at improving the design. The results
obtained are shown in Fig. 12. Substantial increases in
yield were obtained and the results lend support to the
assertion that Monte Carlo based methods are relatively
independent of dimensionality.

6.3 Active filter circuit

Several methods of design centering"*? requirc the

region of acceptability to be both connected and convex.
Recently, Styblinski ef al.® have shown that, for a circuit
in common use and subject to particular performance
constraints, the region of acceptability is not simply con-
nected. The circuit in question is a Sallen-Key type band-

number of fresh circuit analyses
4ol 100 83 35 79 63 53 40 XL 13
h=072
A=01
ADZ \
30
AzD-4
A:O'['

200 B
Jf \
%— 95%, confidence 500 sample Monte
© LAt Carlo estimate for
- iterate no. &

10

|— 500.sample Monte Carlo

‘ ! pctimate for iterate no.d
\ 5. confidence of correctly ranking iterates
|’| 96 85 94 99 = 81 93 9
(] R - . - v s ey 1 o y
1 7 3 4 5 5] 7 a8 g
iteration number
Fig. 12 VYield trajectory obrained by application of the centres-of-

gravity design-centering algorithm to a 43-coefficient transversal
filter

*No apparent increase in yield between iterations 5 and &

o, (0.09895F)

—{k T

insertion loss = 20 log

2
A

Fig. 13 Sallen-Key filter example

IEE PROC., Vol. 127, Pr. G, No. 6, DECEMBER 1980

pass filter. The relevant circuit diagram and performance
requirements are shown in Figs. 13 and 14.

For this example, the region of acceptability is not
simply connected. In other words, it has a region ol non-
acceptability surrounded by a larger region of acceptability.
To illustrate this condition, Fig. 15 depicls a section
through the region of acceplability. The 2-dimensional
section was computed by maintaining, at their nominal
values, all the components except ps and pg, systemati-
cally varying the values of p; and ps and, for each such
combination, analysing the circuit and testing against
performance requirements.

Fig. 16 shows the result of applying the design-centering
algorithm to this circuit, using a sample size of 100. The
result indicated a modest yield increase from 58% to 69% in
three iterations involving a total of 170 circuit analyses.
Confirmatory 500-sample Monte Carlo analyses were
carried out using the design centres of the first and fourth
iterates, and showed an increase in yield from 57% to 65%.
For the first and fourth iterations, and for components 3
and 4, a 2-dimensional section of the tolerance region Is
shown in Fig. 15.
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Fig. 14 Specifications and typical response for Sallen-hey filter
example
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Fig. 156  Section, along axes associated with components 3 and 4,
of the multiparameter component space associated with the Sallen-
Key filter example, showing region of acceptability and location of
tolerance regions corresponding to first and last irerations of design-
centering procedure (see Fig. 16)

267



The above results lend support to the assertion that our
statistical exploration approach to design centering is not
limited to connected regions of acceptability.

7 Conclusions

The centres-of-gravity algorithm possesses desirable proper-
ties that make it a serious candidate for use in tolerance
design. Tts most attractive features are that il appears not to
require an inordinate amount of compulational effort to
deal with circuits containing a large number of toleranced
components, and that it is insensitive to nonconvexity and
nonconnectivity of the region of acceptability. It is equally
applicable to linear and nonlinear circuits and, since it
requires only the evaluation of circuit responses and not
their derivatives with respect to component values, can

m_
70 Aoy | ST
A=l /
fourth
A=1 iteration
60 confirmatory
= 500-sample
EtlrSt tion Monte Carlo
&= eraton  gnalysis
he)
]
S
number of fresh circuit analyses
sS0r total
100 37 18 8 T 170
P °l= confidence of correctly ranking iterates
87 N 85 85
A 1 L - L
1 2 3 4 5
iteration
Fig. 16  Yield rtrajectory obtained by application of centres-of-

gravity design centering algorithin to Sallen-Key filter example

(and has been) ‘bolted on’ to an existing circuit-analysis
package.'"® When compared with other statistically based
methods of design centering, the centres-of-gravily algor-
ithm performs favourably reparding the number of samples
required in each of the Monte Carlo analyses.

Although extensively tested and suited to practical
application, further improvements could usefully be made
to the centres-of-gravity algorithm. Overall, it must be
remarked that the algorithm, in common with many
other direct-search optimisation schemes, has a strong
heuristic basis, and that additional theoretical underpinning
would be heneficial.

A number of specific opportunities for improvement and
extension can be identificd. For example, in view of its
importance for integrated circuit design, the extension of
the algorithm to correlated parameters should be explored.
Also, an improved basis for the choice of step length
(especially when the yield is low) would further assist the
desipner in his interaction with the optimisation. The
influence on the design-centering process of the Monte
Carlo sample size is clearly many-faceted and complex,
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especially in those situations where the designer is afforded
the opportunity of taking extra samples in order to increase
the confidence of correct vicld ranking. Therefore, further
research into questions of sample size would be beneficial
and particularly relevant in circumstances, such as the
study of time-domain behaviour, where each circuit analysis
is expensive.
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10  Appendixes
10.1 Definition of yield

As before, P=py, py, ..., Pg is a set of parameter values
defining a circuit. Let ¢(P, P°, T) be the K-dimensional
joint probability density function describing the statistical
distribution of the component parameter values, We define
£(P) as a lesling function, such that

gP) =1 iff; < fiP) < f;
=0 otherwise

where [}, f; and f, are delined in the main text.
Then Tyield is the expectation of g(P) with respect to

o(P, P°, T):

o o
. v 5 + 1
Vo= <) > [P [N ey o)

o
PE-tK Py -ty

xdpy,dpy, ... dpy

10.2 An algorithm for statistical design centering using the
correlated sampling scheme

Step 1:

Set counter M = 1. Set speed of pscudorandom generator

to some known value denoted by RI.
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Step 2:

Perform Monte Carlo analysis with design centre Pg;
p.d.f ¢(P, P§;, T), sample size Ny Estimate yield Yy, If
M=1,go tostep 4.

Step 3:
Estimate AYy; _,, where
AYpoy = Yy — Yy,

Estimate confidence of correct ranking, i.e. confidence of
being correct about the sign of AYy,_ . If confidence is not
high enough, go to step 6. If confidence is sufficient and
AYy _, is negative, STOP.

Step 4:
Examine parameter values of sample circuits of the M th
Monte Carlo analysis. Determine new design centre

Px%"‘l = P;;’ + hm((:_pm. _GFM)

Step 5:
Reset random seed to value RL. Increment counter, M =
M+ 1. Go to step 2.

Srep 6:
Generate and analyse more random circuits in addition to
the number already analysed. Go to step 3.

10.3 Algorithm for statistical design centering using the
common points scheme

Step 1:
Set counter M =1. Select N, the ‘available sample size’.
Let Nl =N,

Step 2:
Perform Monte Carlo analysis. Sample size N, design
centre P7.
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Step 3:
Determine the new design centre

P-I;?f-l-l = Pl?f +AM((;PI” o GFM)

on the basis of the NV available samples.

Step 4:

Determine regions A, B, C (see Fig. 4). From the V circuit
samples identify and determine the numbers N, and
(N —N 4 ) respectively falling in regions 4 and B. Estimale
partial yields Y, and Ypg. Discard samples in region A.
This leaves (N — N 4 ) samples available for reuse,

Step 5:

Perform modified Monte Carlo analysis. Generale and
analyse N, random (with a uniform distribution) circuits
distributed in region C. Therefore a total of N samples will
now be available for determining the new design centre
(see step 6).

Step 6

Estimate partial yield Y, and hence estimate yield Ypragas
Yo, = Y Vg + Yo Ve, Estimate the difference in
partial yield APY = Yo — Y,. Compute the confidence of
correctly ranking the Mth and (M + 1)th iterates. If
confidence of correct ranking is insufficient, go to step 8.
IT confidence of correct ranking is sufficient and AY; is
negative, STOP.

Step 7:
Increment counter. M =M + 1. Go to step 3.

Step 8:
Perform more circuit analyses in regions A and C. Go to
step 6.
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